論文の概要: Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection
- arxiv url: http://arxiv.org/abs/2206.12911v1
- Date: Sun, 26 Jun 2022 16:00:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 13:20:36.594963
- Title: Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection
- Title(参考訳): 分散検出のためのバッチセンブル確率ニューラルネットワーク
- Authors: Xiongjie Chen, Yunpeng Li, Yongxin Yang
- Abstract要約: Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
- 参考スコア(独自算出の注目度): 55.028065567756066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection has recently received much attention from
the machine learning community due to its importance in deploying machine
learning models in real-world applications. In this paper we propose an
uncertainty quantification approach by modelling the distribution of features.
We further incorporate an efficient ensemble mechanism, namely batch-ensemble,
to construct the batch-ensemble stochastic neural networks (BE-SNNs) and
overcome the feature collapse problem. We compare the performance of the
proposed BE-SNNs with the other state-of-the-art approaches and show that
BE-SNNs yield superior performance on several OOD benchmarks, such as the
Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionMNIST vs NotMNIST
dataset, and the CIFAR10 vs SVHN dataset.
- Abstract(参考訳): Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴分布のモデル化による不確実性定量化手法を提案する。
さらに、バッチアンサンブルと呼ばれる効率的なアンサンブル機構を導入し、バッチアンブル確率ニューラルネットワーク(BE-SNN)を構築し、特徴崩壊問題を克服する。
提案するbe-snnsの性能を,他の最先端の手法と比較し,be-snnが2つのmoonsデータセット, fashionmnist対mnistデータセット, fashionmnist対notmnistデータセット,cifar10対svhnデータセットなど,いくつかのoodベンチマークにおいて優れたパフォーマンスをもたらすことを示した。
関連論文リスト
- Spintronics for image recognition: performance benchmarking via
ultrafast data-driven simulations [4.2412715094420665]
単一スピントロニクスナノ構造を用いたエコー状態ネットワーク(ESN)による画像分類の実証を行った。
我々は、STVO力学をシミュレートするために、データ駆動型Thiele方程式アプローチと呼ばれる超高速なデータ駆動シミュレーションフレームワークを用いる。
我々は、MNIST、EMNIST-letters、Fashion MNISTデータセットで分類課題を解決するために、この手法をうまく適用することで、ソリューションの汎用性を示す。
論文 参考訳(メタデータ) (2023-08-10T18:09:44Z) - Random-Set Neural Networks (RS-NN) [4.549947259731147]
分類のための新しいランダムセットニューラルネットワーク(RS-NN)を提案する。
RS-NNは、一組のクラス上の確率ベクトルよりも信念関数を予測する。
限られたトレーニングセットによって、機械学習で引き起こされる「緊急」不確実性を符号化する。
論文 参考訳(メタデータ) (2023-07-11T20:00:35Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Towards Robust k-Nearest-Neighbor Machine Translation [72.9252395037097]
近年,k-Nearest-Neighbor Machine Translation (kNN-MT)がNMTの重要な研究方向となっている。
その主なアイデアは、NMTモデルを更新することなく翻訳を変更するために、追加のデータストアから有用なキーと値のペアを取得することである。
取り出したノイズペアはモデル性能を劇的に低下させる。
ノイズの影響を軽減するために,頑健なトレーニングを施した信頼性向上kNN-MTモデルを提案する。
論文 参考訳(メタデータ) (2022-10-17T07:43:39Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Accelerating Multi-Objective Neural Architecture Search by Random-Weight
Evaluation [24.44521525130034]
我々は,CNNの品質を定量化するために,RWE(Random-Weight Evaluation)と呼ばれる新しい性能評価指標を導入する。
RWEは最後の層のみをトレーニングし、残りの層をランダムに重み付けする。
提案手法は,2つの実世界の探索空間における最先端性能を持つ効率的なモデルの集合を求める。
論文 参考訳(メタデータ) (2021-10-08T06:35:20Z) - Joint Distribution across Representation Space for Out-of-Distribution
Detection [16.96466730536722]
本稿では,各隠蔽層から生成した潜伏特性を表現空間間の連成分布として利用し,分布内データに対する新たな展望を示す。
まず,隠れ層ごとに分布しない潜在特性に基づいてガウス混合モデル(GMM)を構築し,その後,推定トレースの遷移確率を介してGMMを接続する。
論文 参考訳(メタデータ) (2021-03-23T06:39:29Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
本稿では,最先端の結果を生み出すスパイクニューラルネットワークのアンサンブルを構築する方法について述べる。
MNIST, NMNIST, DVS Gestureデータセットの分類精度は98.71%, 100.0%, 99.09%である。
我々は、スパイキングニューラルネットワークをGLM予測器として形式化し、ターゲットドメインに適した表現を識別する。
論文 参考訳(メタデータ) (2020-10-15T17:45:18Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。