Towards Measuring Adversarial Twitter Interactions against Candidates in
the US Midterm Elections
- URL: http://arxiv.org/abs/2005.04411v1
- Date: Sat, 9 May 2020 10:00:41 GMT
- Title: Towards Measuring Adversarial Twitter Interactions against Candidates in
the US Midterm Elections
- Authors: Yiqing Hua, Thomas Ristenpart, Mor Naaman
- Abstract summary: We measure the adversarial interactions against candidates for the US House of Representatives during the run-up to the 2018 US general election.
We develop a new technique for detecting tweets with toxic content that are directed at any specific candidate.
We use these techniques to outline the breadth of adversarial interactions seen in the election, including offensive name-calling, threats of violence, posting discrediting information, attacks on identity, and adversarial message repetition.
- Score: 25.374045377135307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial interactions against politicians on social media such as Twitter
have significant impact on society. In particular they disrupt substantive
political discussions online, and may discourage people from seeking public
office. In this study, we measure the adversarial interactions against
candidates for the US House of Representatives during the run-up to the 2018 US
general election. We gather a new dataset consisting of 1.7 million tweets
involving candidates, one of the largest corpora focusing on political
discourse. We then develop a new technique for detecting tweets with toxic
content that are directed at any specific candidate.Such technique allows us to
more accurately quantify adversarial interactions towards political candidates.
Further, we introduce an algorithm to induce candidate-specific adversarial
terms to capture more nuanced adversarial interactions that previous techniques
may not consider toxic. Finally, we use these techniques to outline the breadth
of adversarial interactions seen in the election, including offensive
name-calling, threats of violence, posting discrediting information, attacks on
identity, and adversarial message repetition.
Related papers
- On the Use of Proxies in Political Ad Targeting [49.61009579554272]
We show that major political advertisers circumvented mitigations by targeting proxy attributes.
Our findings have crucial implications for the ongoing discussion on the regulation of political advertising.
arXiv Detail & Related papers (2024-10-18T17:15:13Z) - Finding Hidden Swing Voters in the 2022 Italian Elections Twitter Discourse [1.3654846342364308]
We examine the dynamics of political messaging and voter behavior on Twitter during the 2022 Italian general elections.
Our analysis reveals that during election periods, the popularity of politicians increases, and there is a notable variation in the use of persuasive language techniques.
Swing voters are more vulnerable to these propaganda techniques compared to non-swing voters, with differences in vulnerability patterns across various types of political shifts.
arXiv Detail & Related papers (2024-07-01T13:34:29Z) - Quantifying the Uniqueness of Donald Trump in Presidential Discourse [51.76056700705539]
This paper introduces a novel metric of uniqueness based on large language models.
We find considerable evidence that Trump's speech patterns diverge from those of all major party nominees for the presidency in recent history.
arXiv Detail & Related papers (2024-01-02T19:00:17Z) - The Chance of Winning Election Impacts on Social Media Strategy [7.528982057686348]
We analyze candidates' tweets in terms of users, topics, and sentiment of replies.
As their chances of winning increase, candidates narrow the targets they communicate with.
arXiv Detail & Related papers (2023-01-18T03:10:02Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
We use a dataset of 15 million election-related tweets in the six months preceding election day.
We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods.
arXiv Detail & Related papers (2023-01-02T12:40:05Z) - Political Communities on Twitter: Case Study of the 2022 French
Presidential Election [14.783829037950984]
We aim to identify political communities formed on Twitter during the 2022 French presidential election.
We create a large-scale Twitter dataset containing 1.2 million users and 62.6 million tweets that mention keywords relevant to the election.
We perform community detection on a retweet graph of users and propose an in-depth analysis of the stance of each community.
arXiv Detail & Related papers (2022-04-15T12:18:16Z) - Shifting Polarization and Twitter News Influencers between two U.S.
Presidential Elections [92.33485580547801]
We analyze the change of polarization between the 2016 and 2020 U.S. presidential elections.
Most of the top influencers were affiliated with media organizations during both elections.
75% of the top influencers in 2020 were not present in 2016, demonstrating that such status is difficult to retain.
arXiv Detail & Related papers (2021-11-03T20:08:54Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
A way of reducing polarization would be by distributing cross-partisan news among individuals with distinct political orientations.
This study investigates whether this holds in the context of nationwide elections in Brazil and Canada.
arXiv Detail & Related papers (2021-09-18T11:34:04Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020
US Elections on the Basis of Offensive Speech and Stance Detection [11.335643770130238]
We investigate online communication of the supporters of the candidates Biden and Trump, by uttering hateful and offensive communication.
We formulate an annotation task, in which we join the tasks of hateful/offensive speech detection and stance detection.
We analyze if supporters of Joe Biden and the Democratic Party communicate differently than supporters of Donald Trump and the Republican Party.
arXiv Detail & Related papers (2021-03-02T11:59:54Z) - Inferring Political Preferences from Twitter [0.0]
Political Sentiment Analysis of social media helps the political strategists to scrutinize the performance of a party or candidate.
During the time of elections, the social networks get flooded with blogs, chats, debates and discussions about the prospects of political parties and politicians.
In this work, we chose to identify the inclination of political opinions present in Tweets by modelling it as a text classification problem using classical machine learning.
arXiv Detail & Related papers (2020-07-21T05:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.