論文の概要: Reinforcement Learning for Thermostatically Controlled Loads Control
using Modelica and Python
- arxiv url: http://arxiv.org/abs/2005.04444v1
- Date: Sat, 9 May 2020 13:35:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 06:41:43.373106
- Title: Reinforcement Learning for Thermostatically Controlled Loads Control
using Modelica and Python
- Title(参考訳): Modelica と Python を用いた温度制御負荷制御のための強化学習
- Authors: Oleh Lukianykhin, Tetiana Bogodorova
- Abstract要約: このプロジェクトは、電力系統制御に強化学習(RL)を適用する機会を調査し、評価することを目的としている。
The proof of concept (PoC) was developed to voltage control of thermostatically controlled loads (TCLs) for power consumption using Modelica-based pipeline。
本稿では,状態空間の離散化を含むQ-ラーニングパラメータが制御性能に与える影響について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of the project is to investigate and assess opportunities for
applying reinforcement learning (RL) for power system control. As a proof of
concept (PoC), voltage control of thermostatically controlled loads (TCLs) for
power consumption regulation was developed using Modelica-based pipeline. The
Q-learning RL algorithm has been validated for deterministic and stochastic
initialization of TCLs. The latter modelling is closer to real grid behaviour,
which challenges the control development, considering the stochastic nature of
load switching. In addition, the paper shows the influence of Q-learning
parameters, including discretization of state-action space, on the controller
performance.
- Abstract(参考訳): プロジェクトの目的は,強化学習(rl)を電力系統制御に適用する機会を調査し,評価することである。
概念実証(poc)として,電力消費規制のための熱静電制御負荷(tcls)の電圧制御がmodelicaベースのパイプラインを用いて開発された。
Q-learning RLアルゴリズムはTCLの決定的および確率的初期化に対して検証されている。
後者のモデリングは、負荷切替の確率的な性質を考慮して、制御開発に挑戦する実際のグリッド動作に近い。
さらに,状態空間の離散化を含むQ-ラーニングパラメータが制御性能に及ぼす影響について述べる。
関連論文リスト
- Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - A Safe Reinforcement Learning Algorithm for Supervisory Control of Power
Plants [7.1771300511732585]
モデルフリー強化学習(RL)は、制御タスクのための有望なソリューションとして登場した。
本稿では,監督制御のための近似ポリシ最適化に基づく確率制約付きRLアルゴリズムを提案する。
本手法は, 原子力プラント設計における負荷追従操作において, 違反距離と違反率の最小化を実現するものである。
論文 参考訳(メタデータ) (2024-01-23T17:52:49Z) - An experimental evaluation of Deep Reinforcement Learning algorithms for HVAC control [40.71019623757305]
近年の研究では、Deep Reinforcement Learning (DRL)アルゴリズムが従来のリアクティブコントローラより優れていることが示されている。
本稿では,HVAC制御のためのいくつかの最先端DRLアルゴリズムについて,批判的かつ再現可能な評価を行う。
論文 参考訳(メタデータ) (2024-01-11T08:40:26Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
強化学習(Reinforcement Learning, RL)は、自動制御アプリケーションにおける将来的なトピックである。
アクター批判に基づくRLコントローラのためのイニシアティブアクション状態拡張(IASA)が導入される。
この拡張は専門家の知識を必要とせず、アプローチモデルを無償にしておく。
論文 参考訳(メタデータ) (2022-01-31T16:29:19Z) - RL-Controller: a reinforcement learning framework for active structural
control [0.0]
フレキシブルでスケーラブルなシミュレーション環境であるRL-Controllerを導入することで,アクティブコントローラを設計するための新しいRLベースのアプローチを提案する。
提案するフレームワークは,5階建てのベンチマークビルディングに対して,平均65%の削減率で,容易に学習可能であることを示す。
LQG 能動制御法との比較研究において,提案したモデルフリーアルゴリズムはより最適なアクチュエータ強制戦略を学習することを示した。
論文 参考訳(メタデータ) (2021-03-13T04:42:13Z) - Regularizing Action Policies for Smooth Control with Reinforcement
Learning [47.312768123967025]
Conditioning for Action Policy Smoothness(CAPS)は、アクションポリシーの効果的な直感的な正規化である。
capsは、ニューラルネットワークコントローラの学習状態-動作マッピングの滑らかさを一貫して改善する。
実システムでテストしたところ、クアドロタードローンのコントローラーの滑らかさが改善され、消費電力は80%近く削減された。
論文 参考訳(メタデータ) (2020-12-11T21:35:24Z) - Anticipating the Long-Term Effect of Online Learning in Control [75.6527644813815]
AntLerは、学習を予想する学習ベースの制御法則の設計アルゴリズムである。
AntLer は確率 1 と任意に最適な解を近似することを示す。
論文 参考訳(メタデータ) (2020-07-24T07:00:14Z) - Data-Driven Learning and Load Ensemble Control [1.647866856596524]
本研究の目的は、グリッドサポートサービスを提供するために、温度制御可能な負荷(TCL)など、分散された小規模のフレキシブルな負荷に取り組むことである。
このデータ駆動学習の効率性は, 住宅のテストベッド地区における暖房, 冷却, 換気ユニットのシミュレーションによって実証される。
論文 参考訳(メタデータ) (2020-04-20T23:32:10Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
強化学習フレームワークは、CBFおよびCLF制約に存在するモデル不確実性を学ぶ。
RL-CBF-CLF-QPは、安全制約におけるモデル不確実性の問題に対処する。
論文 参考訳(メタデータ) (2020-04-16T10:51:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。