論文の概要: Model-based controller assisted domain randomization in deep reinforcement learning: application to nonlinear powertrain control
- arxiv url: http://arxiv.org/abs/2504.19715v1
- Date: Mon, 28 Apr 2025 12:09:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.417642
- Title: Model-based controller assisted domain randomization in deep reinforcement learning: application to nonlinear powertrain control
- Title(参考訳): 深部強化学習におけるモデルベース制御を用いた領域ランダム化:非線形パワートレイン制御への応用
- Authors: Heisei Yonezawa, Ansei Yonezawa, Itsuro Kajiwara,
- Abstract要約: 本研究では, 深部強化学習(DRL)の枠組みを用いた新しいロバスト制御手法を提案する。
問題設定は、不確実性と非線形性を考慮した制御系に対して、バニラMDPの集合である潜在マルコフ決定プロセス(LMDP)を介してモデル化される。
従来のDRLベースの制御と比較して、提案するコントローラ設計はより賢く、高度な一般化能力を実現することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex mechanical systems such as vehicle powertrains are inherently subject to multiple nonlinearities and uncertainties arising from parametric variations. Modeling and calibration errors are therefore unavoidable, making the transfer of control systems from simulation to real-world systems a critical challenge. Traditional robust controls have limitations in handling certain types of nonlinearities and uncertainties, requiring a more practical approach capable of comprehensively compensating for these various constraints. This study proposes a new robust control approach using the framework of deep reinforcement learning (DRL). The key strategy lies in the synergy among domain randomization-based DRL, long short-term memory (LSTM)-based actor and critic networks, and model-based control (MBC). The problem setup is modeled via the latent Markov decision process (LMDP), a set of vanilla MDPs, for a controlled system subject to uncertainties and nonlinearities. In LMDP, the dynamics of an environment simulator is randomized during training to improve the robustness of the control system to real testing environments. The randomization increases training difficulties as well as conservativeness of the resultant control system; therefore, progress is assisted by concurrent use of a model-based controller based on a nominal system model. Compared to traditional DRL-based controls, the proposed controller design is smarter in that we can achieve a high level of generalization ability with a more compact neural network architecture and a smaller amount of training data. The proposed approach is verified via practical application to active damping for a complex powertrain system with nonlinearities and parametric variations. Comparative tests demonstrate the high robustness of the proposed approach.
- Abstract(参考訳): 車載パワートレインのような複雑な機械系は、本質的にパラメトリックな変動から生じる複数の非線形性と不確実性に従属する。
したがって、モデリングとキャリブレーションの誤差は避けられないため、シミュレーションから実世界のシステムへの制御システムの移行は重要な課題である。
従来の堅牢な制御は、ある種の非線形性と不確実性を扱う際に制限があり、これらの様々な制約を包括的に補償できるより実践的なアプローチを必要とする。
本研究では, 深部強化学習(DRL)の枠組みを用いた新しい頑健な制御手法を提案する。
鍵となる戦略は、ドメインランダム化に基づくDRL、長期記憶(LSTM)ベースのアクターと批評家ネットワーク、モデルベース制御(MBC)のシナジーにある。
問題設定は、不確実性と非線形性を考慮した制御系に対して、バニラMDPの集合である潜在マルコフ決定プロセス(LMDP)を介してモデル化される。
LMDPでは、実環境での制御システムの堅牢性を改善するため、トレーニング中に環境シミュレータのダイナミクスがランダム化される。
ランダム化はトレーニングの難しさと結果の制御システムの保守性を増大させるため、名目システムモデルに基づくモデルベースコントローラの同時使用によって進行が促進される。
従来のDRLベースの制御と比較して、よりコンパクトなニューラルネットワークアーキテクチャと少ないトレーニングデータで高レベルの一般化能力を実現することができるため、提案するコントローラ設計はよりスマートである。
提案手法は非線形性およびパラメトリック変動を有する複雑なパワートレイン系に対するアクティブダンピングへの実用的応用により検証される。
比較試験は,提案手法の強靭性を示すものである。
関連論文リスト
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
本稿では,モデルベース制御とRLベース制御を統合し,ロバスト性を高めるニューラル内部モデル制御を提案する。
我々のフレームワークは、剛体力学にニュートン・オイラー方程式を適用することで予測モデルを合理化し、複雑な高次元非線形性を捉える必要がなくなる。
本研究では,四足歩行ロボットと四足歩行ロボットにおけるフレームワークの有効性を実証し,最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T07:07:42Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
本研究では, (e)NMPCの一部として最適性能を示すために, Koopman シュロゲートモデルの強化学習法を提案する。
エンドツーエンドトレーニングモデルは,(e)NMPCにおけるシステム識別を用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T10:21:53Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - Bridging Model-based Safety and Model-free Reinforcement Learning
through System Identification of Low Dimensional Linear Models [16.511440197186918]
モデルベース安全性とモデルフリー強化学習を組み合わせた新しい手法を提案する。
閉ループ系の力学を捉えるためには,低次元の力学モデルが十分であることを示す。
検出された線形モデルは、安全クリティカルな最適制御フレームワークによる保証を提供することができることを示す。
論文 参考訳(メタデータ) (2022-05-11T22:03:18Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
強化学習(Reinforcement Learning, RL)は、自動制御アプリケーションにおける将来的なトピックである。
アクター批判に基づくRLコントローラのためのイニシアティブアクション状態拡張(IASA)が導入される。
この拡張は専門家の知識を必要とせず、アプローチモデルを無償にしておく。
論文 参考訳(メタデータ) (2022-01-31T16:29:19Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings [1.4121977037543585]
未知の非線形システムに対する制約付き制御法を学習するための微分予測制御(DPC)手法を提案する。
DPCは、明示的非線形モデル予測制御(MPC)から生じるマルチパラメトリックプログラミング問題に対する近似解を提供する
論文 参考訳(メタデータ) (2021-07-25T16:47:57Z) - Two-step reinforcement learning for model-free redesign of nonlinear
optimal regulator [1.5624421399300306]
強化学習(Reinforcement Learning, RL)は、非線形力学系のための最適制御系をモデル無しで再設計できる、有望なアプローチの1つである。
未知の非線形システムに対する最適レギュレーション再設計問題において,RLの過渡学習性能を向上させるモデルフリー2段階設計手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T17:12:33Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。