Intelligent GPS Spoofing Attack Detection in Power Grids
- URL: http://arxiv.org/abs/2005.04513v1
- Date: Sat, 9 May 2020 20:52:18 GMT
- Title: Intelligent GPS Spoofing Attack Detection in Power Grids
- Authors: Mohammad Sabouri, Sara Siamak, Maryam Dehghani, Mohsen Mohammadi and
Mohammad Hassan Asemani
- Abstract summary: GPS is vulnerable to GPS spoofing attack (GSA)
In power grids, phasor measurement units (PMUs) use GPS to build time-tagged measurements.
In this paper, a neural network GPS spoofing detection (NNGSD) with employing PMU data is presented to detect GSAs.
- Score: 0.7034739490820968
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The GPS is vulnerable to GPS spoofing attack (GSA), which leads to disorder
in time and position results of the GPS receiver. In power grids, phasor
measurement units (PMUs) use GPS to build time-tagged measurements, so they are
susceptible to this attack. As a result of this attack, sampling time and phase
angle of the PMU measurements change. In this paper, a neural network GPS
spoofing detection (NNGSD) with employing PMU data from the dynamic power
system is presented to detect GSAs. Numerical results in different conditions
show the real-time performance of the proposed detection method.
Related papers
- GPS-IDS: An Anomaly-based GPS Spoofing Attack Detection Framework for Autonomous Vehicles [0.8906214436849204]
GPS networks are vulnerable to cyber-attacks like spoofing and jamming.
These threats are expected to intensify with the widespread deployment of AVs.
This paper proposes GPS Intrusion Detection System to detect GPS spoofing attacks on AVs.
arXiv Detail & Related papers (2024-05-14T06:55:16Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
In the 6G era, real-time radio resource monitoring and management are urged to support diverse wireless-empowered applications.
In this paper, we present a cooperative radio map estimation approach enabled by the generative adversarial network (GAN)
arXiv Detail & Related papers (2024-02-05T05:01:28Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
This study investigates whether specific GPS signals can easily mislead the multi-agent perception system.
We introduce textscAdvGPS, a method capable of generating adversarial GPS signals which are also stealthy for individual agents within the system.
Our experiments on the OPV2V dataset demonstrate that these attacks substantially undermine the performance of state-of-the-art methods.
arXiv Detail & Related papers (2024-01-30T23:13:41Z) - Unveiling the Stealthy Threat: Analyzing Slow Drift GPS Spoofing Attacks for Autonomous Vehicles in Urban Environments and Enabling the Resilience [4.898754501085215]
This study explores a stealthy slow drift GPS spoofing attack, replicating the victim AV's satellite reception pattern.
The attack is designed to gradually deviate from the correct route, making real-time detection challenging.
Changing the pseudo ranges confuses the AV, leading it to incorrect destinations while remaining oblivious to the manipulation.
arXiv Detail & Related papers (2024-01-02T17:36:07Z) - Experimental Validation of Sensor Fusion-based GNSS Spoofing Attack
Detection Framework for Autonomous Vehicles [5.624009710240032]
We present a sensor fusion-based spoofing attack detection framework for Autonomous Vehicles.
Experiments are conducted in Tuscaloosa, AL, mimicking urban road structures.
Results demonstrate the framework's ability to detect various sophisticated spoofing attacks, even including slow drifting attacks.
arXiv Detail & Related papers (2024-01-02T17:30:46Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
We focus on inferring the ego trajectory of a driver's vehicle using their gaze data.
Next, we develop G-MEMP, a novel multimodal ego-trajectory prediction network that combines GPS and video input with gaze data.
The results show that G-MEMP significantly outperforms state-of-the-art methods in both benchmarks.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Prediction-Based GNSS Spoofing Attack Detection for Autonomous Vehicles [5.579370215490055]
We have developed a prediction-based spoofing attack detection strategy using the long short-term memory (LSTM) model.
Based on the predicted distance traveled between the current location and the immediate future location, a threshold value is established.
Our analysis revealed that the prediction-based spoofed attack detection strategy can successfully detect the attack in real-time.
arXiv Detail & Related papers (2020-10-16T18:26:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.