Language Guided Adversarial Purification
- URL: http://arxiv.org/abs/2309.10348v1
- Date: Tue, 19 Sep 2023 06:17:18 GMT
- Title: Language Guided Adversarial Purification
- Authors: Himanshu Singh, A V Subramanyam
- Abstract summary: Adversarial purification using generative models demonstrates strong adversarial defense performance.
New framework, Language Guided Adversarial Purification (LGAP), utilizing pre-trained diffusion models and caption generators.
- Score: 3.9931474959554496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial purification using generative models demonstrates strong
adversarial defense performance. These methods are classifier and
attack-agnostic, making them versatile but often computationally intensive.
Recent strides in diffusion and score networks have improved image generation
and, by extension, adversarial purification. Another highly efficient class of
adversarial defense methods known as adversarial training requires specific
knowledge of attack vectors, forcing them to be trained extensively on
adversarial examples. To overcome these limitations, we introduce a new
framework, namely Language Guided Adversarial Purification (LGAP), utilizing
pre-trained diffusion models and caption generators to defend against
adversarial attacks. Given an input image, our method first generates a
caption, which is then used to guide the adversarial purification process
through a diffusion network. Our approach has been evaluated against strong
adversarial attacks, proving its effectiveness in enhancing adversarial
robustness. Our results indicate that LGAP outperforms most existing
adversarial defense techniques without requiring specialized network training.
This underscores the generalizability of models trained on large datasets,
highlighting a promising direction for further research.
Related papers
- DiffuseDef: Improved Robustness to Adversarial Attacks [38.34642687239535]
adversarial attacks pose a critical challenge to system built using pretrained language models.
We propose DiffuseDef, which incorporates a diffusion layer as a denoiser between the encoder and the classifier.
During inference, the adversarial hidden state is first combined with sampled noise, then denoised iteratively and finally ensembled to produce a robust text representation.
arXiv Detail & Related papers (2024-06-28T22:36:17Z) - Improving Adversarial Robustness via Decoupled Visual Representation Masking [65.73203518658224]
In this paper, we highlight two novel properties of robust features from the feature distribution perspective.
We find that state-of-the-art defense methods aim to address both of these mentioned issues well.
Specifically, we propose a simple but effective defense based on decoupled visual representation masking.
arXiv Detail & Related papers (2024-06-16T13:29:41Z) - GenFighter: A Generative and Evolutive Textual Attack Removal [6.044610337297754]
Adrial attacks pose significant challenges to deep neural networks (DNNs) such as Transformer models in natural language processing (NLP)
This paper introduces a novel defense strategy, called GenFighter, which enhances adversarial robustness by learning and reasoning on the training classification distribution.
We show that GenFighter outperforms state-of-the-art defenses in accuracy under attack and attack success rate metrics.
arXiv Detail & Related papers (2024-04-17T16:32:13Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models [7.406040859734522]
Unrestricted adversarial attacks present a serious threat to deep learning models and adversarial defense techniques.
Previous attack methods often directly inject Projected Gradient Descent (PGD) gradients into the sampling of generative models.
We propose a new method, called AdvDiff, to generate unrestricted adversarial examples with diffusion models.
arXiv Detail & Related papers (2023-07-24T03:10:02Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
Adrial purification refers to a class of defense methods that remove adversarial perturbations using a generative model.
We propose DiffPure that uses diffusion models for adversarial purification.
Our method achieves the state-of-the-art results, outperforming current adversarial training and adversarial purification methods.
arXiv Detail & Related papers (2022-05-16T06:03:00Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z) - Adversarial Feature Desensitization [12.401175943131268]
We propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field.
Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs.
arXiv Detail & Related papers (2020-06-08T14:20:02Z) - Class-Aware Domain Adaptation for Improving Adversarial Robustness [27.24720754239852]
adversarial training has been proposed to train networks by injecting adversarial examples into the training data.
We propose a novel Class-Aware Domain Adaptation (CADA) method for adversarial defense without directly applying adversarial training.
arXiv Detail & Related papers (2020-05-10T03:45:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.