An Integrated Enhancement Solution for 24-hour Colorful Imaging
- URL: http://arxiv.org/abs/2005.04580v1
- Date: Sun, 10 May 2020 05:11:34 GMT
- Title: An Integrated Enhancement Solution for 24-hour Colorful Imaging
- Authors: Feifan Lv, Yinqiang Zheng, Yicheng Li, Feng Lu
- Abstract summary: Current industry practice for 24-hour outdoor imaging is to use a silicon camera supplemented with near-infrared (NIR) illumination.
This will result in color images with poor contrast at daytime and absence of chrominance at nighttime.
We propose a novel and integrated enhancement solution that produces clear color images, whether at abundant sunlight daytime or extremely low-light nighttime.
- Score: 51.782600936647235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The current industry practice for 24-hour outdoor imaging is to use a silicon
camera supplemented with near-infrared (NIR) illumination. This will result in
color images with poor contrast at daytime and absence of chrominance at
nighttime. For this dilemma, all existing solutions try to capture RGB and NIR
images separately. However, they need additional hardware support and suffer
from various drawbacks, including short service life, high price, specific
usage scenario, etc. In this paper, we propose a novel and integrated
enhancement solution that produces clear color images, whether at abundant
sunlight daytime or extremely low-light nighttime. Our key idea is to separate
the VIS and NIR information from mixed signals, and enhance the VIS signal
adaptively with the NIR signal as assistance. To this end, we build an optical
system to collect a new VIS-NIR-MIX dataset and present a physically meaningful
image processing algorithm based on CNN. Extensive experiments show outstanding
results, which demonstrate the effectiveness of our solution.
Related papers
- NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Dataset [53.79524776100983]
Leveraging near-infrared (NIR) images to assist visible RGB image denoising shows the potential to address this issue.
Existing works still struggle with taking advantage of NIR information effectively for real-world image denoising.
We propose an efficient Selective Fusion Module (SFM), which can be plug-and-played into the advanced denoising networks.
arXiv Detail & Related papers (2024-04-12T14:54:26Z) - NiteDR: Nighttime Image De-Raining with Cross-View Sensor Cooperative Learning for Dynamic Driving Scenes [49.92839157944134]
In nighttime driving scenes, insufficient and uneven lighting shrouds the scenes in darkness, resulting degradation of image quality and visibility.
We develop an image de-raining framework tailored for rainy nighttime driving scenes.
It aims to remove rain artifacts, enrich scene representation, and restore useful information.
arXiv Detail & Related papers (2024-02-28T09:02:33Z) - You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images.
We propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI)
It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters.
arXiv Detail & Related papers (2024-02-08T16:47:43Z) - Nighttime Thermal Infrared Image Colorization with Feedback-based Object
Appearance Learning [27.58748298687474]
We propose a generative adversarial network incorporating feedback-based object appearance learning (FoalGAN)
FoalGAN is effective for appearance learning of small objects, but also outperforms other image translation methods in terms of semantic preservation and edge consistency.
arXiv Detail & Related papers (2023-10-24T09:59:55Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
Previous arts mainly focus on the low-light images captured in the visible spectrum using pixel-wise loss.
We propose a novel approach to increase the visibility of images captured under low-light environments by removing the in-camera infrared (IR) cut-off filter.
arXiv Detail & Related papers (2023-07-09T08:29:19Z) - Visibility Constrained Wide-band Illumination Spectrum Design for
Seeing-in-the-Dark [38.11468156313255]
Seeing-in-the-dark is one of the most important and challenging computer vision tasks.
In this paper, we try to robustify NIR2RGB translation by designing the optimal spectrum of auxiliary illumination in the wide-band VIS-NIR range.
arXiv Detail & Related papers (2023-03-21T07:27:37Z) - Rendering Nighttime Image Via Cascaded Color and Brightness Compensation [22.633061635144887]
We build a high-resolution nighttime RAW-RGB dataset with white balance and tone mapping annotated by experts.
We then develop the CBUnet, a two-stage NN ISP to cascade the compensation of color and brightness attributes.
Experiments show that our method has better visual quality compared to traditional ISP pipeline.
arXiv Detail & Related papers (2022-04-19T16:15:31Z) - Deep White-Balance Editing [50.08927449718674]
Cameras capture sensor images that are rendered by their integrated signal processor (ISP) to a standard RGB (sRGB) color space encoding.
Recent work by [3] showed that sRGB images that were rendered with the incorrect white balance cannot be easily corrected due to the ISP's nonlinear rendering.
We propose to solve this problem with a deep neural network (DNN) architecture trained in an end-to-end manner to learn the correct white balance.
arXiv Detail & Related papers (2020-04-03T03:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.