NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Dataset
- URL: http://arxiv.org/abs/2404.08514v3
- Date: Thu, 18 Apr 2024 19:30:49 GMT
- Title: NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Dataset
- Authors: Rongjian Xu, Zhilu Zhang, Renlong Wu, Wangmeng Zuo,
- Abstract summary: Leveraging near-infrared (NIR) images to assist visible RGB image denoising shows the potential to address this issue.
Existing works still struggle with taking advantage of NIR information effectively for real-world image denoising.
We propose an efficient Selective Fusion Module (SFM), which can be plug-and-played into the advanced denoising networks.
- Score: 53.79524776100983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the significant progress in image denoising, it is still challenging to restore fine-scale details while removing noise, especially in extremely low-light environments. Leveraging near-infrared (NIR) images to assist visible RGB image denoising shows the potential to address this issue, becoming a promising technology. Nonetheless, existing works still struggle with taking advantage of NIR information effectively for real-world image denoising, due to the content inconsistency between NIR-RGB images and the scarcity of real-world paired datasets. To alleviate the problem, we propose an efficient Selective Fusion Module (SFM), which can be plug-and-played into the advanced denoising networks to merge the deep NIR-RGB features. Specifically, we sequentially perform the global and local modulation for NIR and RGB features, and then integrate the two modulated features. Furthermore, we present a Real-world NIR-Assisted Image Denoising (Real-NAID) dataset, which covers diverse scenarios as well as various noise levels. Extensive experiments on both synthetic and our real-world datasets demonstrate that the proposed method achieves better results than state-of-the-art ones. The dataset, codes, and pre-trained models will be publicly available at https://github.com/ronjonxu/NAID.
Related papers
- Attentive Multimodal Fusion for Optical and Scene Flow [24.08052492109655]
Existing methods typically rely solely on RGB images or fuse the modalities at later stages.
We propose a novel deep neural network approach named FusionRAFT, which enables early-stage information fusion between sensor modalities.
Our approach exhibits improved robustness in the presence of noise and low-lighting conditions that affect the RGB images.
arXiv Detail & Related papers (2023-07-28T04:36:07Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - DarkVisionNet: Low-Light Imaging via RGB-NIR Fusion with Deep
Inconsistency Prior [6.162654963520402]
High-intensity noise in low-light images amplifies the effect of structure inconsistency between RGB-NIR images, which fails existing algorithms.
We propose a new RGB-NIR fusion algorithm called Dark Vision Net (DVN) with two technical novelties: Deep Structure and Deep Inconsistency Prior (DIP)
Based on the deep structures from both RGB and NIR domains, we introduce the DIP to leverage the structure inconsistency to guide the fusion of RGB-NIR.
arXiv Detail & Related papers (2023-03-13T03:31:29Z) - Rawgment: Noise-Accounted RAW Augmentation Enables Recognition in a Wide
Variety of Environments [1.0323063834827415]
We propose a noise-accounted RAW image augmentation method for image recognition in challenging environments.
In essence, color jitter and blur augmentation are applied to a RAW image before applying non-linear ISP, resulting in realistic intensity.
We show that our proposed noise-accounted RAW augmentation method doubles the image recognition accuracy in challenging environments only with simple training data.
arXiv Detail & Related papers (2022-10-28T10:33:45Z) - Seeing Through The Noisy Dark: Toward Real-world Low-Light Image
Enhancement and Denoising [125.56062454927755]
Real-world low-light environment usually suffer from lower visibility and heavier noise, due to insufficient light or hardware limitation.
We propose a novel end-to-end method termed Real-world Low-light Enhancement & Denoising Network (RLED-Net)
arXiv Detail & Related papers (2022-10-02T14:57:23Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - CycleISP: Real Image Restoration via Improved Data Synthesis [166.17296369600774]
We present a framework that models camera imaging pipeline in forward and reverse directions.
By training a new image denoising network on realistic synthetic data, we achieve the state-of-the-art performance on real camera benchmark datasets.
arXiv Detail & Related papers (2020-03-17T15:20:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.