On the Transferability of Knowledge among Vehicle Routing Problems by
using Cellular Evolutionary Multitasking
- URL: http://arxiv.org/abs/2005.05066v2
- Date: Sun, 17 May 2020 08:09:31 GMT
- Title: On the Transferability of Knowledge among Vehicle Routing Problems by
using Cellular Evolutionary Multitasking
- Authors: Eneko Osaba, Aritz D. Martinez, Jesus L. Lobo, Ibai La\~na and Javier
Del Ser
- Abstract summary: This work is focused on the application of the recently proposed Multifactorial Cellular Genetic Algorithm (MFCGA) to the Capacitated Vehicle Routing Problem (CVRP)
The contribution of this research is twofold. On the one hand, it is the first application of the MFCGA to the Vehicle Routing Problem family of problems. On the other hand, equally interesting is the second contribution, which is focused on the quantitative analysis of the positive genetic transferability among the problem instances.
- Score: 6.943742860591444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multitasking optimization is a recently introduced paradigm, focused on the
simultaneous solving of multiple optimization problem instances (tasks). The
goal of multitasking environments is to dynamically exploit existing
complementarities and synergies among tasks, helping each other through the
transfer of genetic material. More concretely, Evolutionary Multitasking (EM)
regards to the resolution of multitasking scenarios using concepts inherited
from Evolutionary Computation. EM approaches such as the well-known
Multifactorial Evolutionary Algorithm (MFEA) are lately gaining a notable
research momentum when facing with multiple optimization problems. This work is
focused on the application of the recently proposed Multifactorial Cellular
Genetic Algorithm (MFCGA) to the well-known Capacitated Vehicle Routing Problem
(CVRP). In overall, 11 different multitasking setups have been built using 12
datasets. The contribution of this research is twofold. On the one hand, it is
the first application of the MFCGA to the Vehicle Routing Problem family of
problems. On the other hand, equally interesting is the second contribution,
which is focused on the quantitative analysis of the positive genetic
transferability among the problem instances. To do that, we provide an
empirical demonstration of the synergies arisen between the different
optimization tasks.
Related papers
- Multi-Task Learning with Multi-Task Optimization [31.518330903602095]
We show that a set of optimized yet well-distributed models embody different trade-offs in one algorithmic pass.
We investigate the proposed multi-task learning with multi-task optimization for solving various problem settings.
arXiv Detail & Related papers (2024-03-24T14:04:40Z) - Towards Multi-Objective High-Dimensional Feature Selection via
Evolutionary Multitasking [63.91518180604101]
This paper develops a novel EMT framework for high-dimensional feature selection problems, namely MO-FSEMT.
A task-specific knowledge transfer mechanism is designed to leverage the advantage information of each task, enabling the discovery and effective transmission of high-quality solutions.
arXiv Detail & Related papers (2024-01-03T06:34:39Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
Multi-task learning aims to acquire a set of functions that perform well for diverse tasks.
In this paper we draw intuition from the two extreme learning scenarios -- a single function for all tasks, and a task-specific function that ignores the other tasks.
We introduce a constrained learning formulation that enforces domain specific solutions to a central function.
arXiv Detail & Related papers (2022-10-27T16:06:47Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic
Algorithm for Evolutionary Multitasking [17.120962133525225]
We introduce a novel adaptive metaheuristic algorithm to deal with Evolutionary Multitasking environments.
AT-MFCGA relies on cellular automata to implement mechanisms in order to exchange knowledge among the optimization problems under consideration.
arXiv Detail & Related papers (2020-10-08T12:00:10Z) - Small Towers Make Big Differences [59.243296878666285]
Multi-task learning aims at solving multiple machine learning tasks at the same time.
A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal.
We propose a method of under- parameterized self-auxiliaries for multi-task models to achieve the best of both worlds.
arXiv Detail & Related papers (2020-08-13T10:45:31Z) - dMFEA-II: An Adaptive Multifactorial Evolutionary Algorithm for
Permutation-based Discrete Optimization Problems [6.943742860591444]
We propose the first adaptation of the recently introduced Multifactorial Evolutionary Algorithm II (MFEA-II) to permutation-based discrete environments.
The performance of the proposed solver has been assessed over 5 different multitasking setups.
arXiv Detail & Related papers (2020-04-14T14:42:47Z) - COEBA: A Coevolutionary Bat Algorithm for Discrete Evolutionary
Multitasking [9.54239662772307]
We propose a novel algorithmic scheme for dealing with multitasking environments.
The proposed approach, coined as Coevolutionary Bat Algorithm, finds its inspiration in concepts from both co-evolutionary strategies and the metaheuristic Bat Algorithm.
arXiv Detail & Related papers (2020-03-24T13:37:43Z) - Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design,
Performance Comparison and Genetic Transferability Analysis [17.120962133525225]
Multiobjective optimization is an incipient research area which is lately gaining a notable research momentum.
In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios.
The proposed MFCGA hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems.
arXiv Detail & Related papers (2020-03-24T11:03:55Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.