Charging and energy fluctuations of a driven quantum battery
- URL: http://arxiv.org/abs/2005.05068v1
- Date: Mon, 11 May 2020 13:01:23 GMT
- Title: Charging and energy fluctuations of a driven quantum battery
- Authors: A. Crescente, M. Carrega, M. Sassetti, D. Ferraro
- Abstract summary: We consider a set of N independent two-level quantum systems driven by a time dependent classical source.
Different figures of merit, such as stored energy, time of charging and energy quantum fluctuations during the charging process, are characterized.
It is shown that an optimal charging protocol, characterized by fast charging time and the absence of charging fluctuations, can be achieved.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a quantum battery modeled as a set of N independent two-level
quantum systems driven by a time dependent classical source. Different figures
of merit, such as stored energy, time of charging and energy quantum
fluctuations during the charging process, are characterized in a wide range of
parameters, by means of numerical approach and suitable analytical
approximation scheme. Particular emphasis is put on the role of different
initial conditions, describing the preparation state of the quantum battery, as
well as on the sensitivity to the functional form of the external
time-dependent drive. It is shown that an optimal charging protocol,
characterized by fast charging time and the absence of charging fluctuations,
can be achieved starting from the ground state of each two-level system, while
other pure preparation states are less efficient. Moreover, we argue that a
periodic train of peaked rectangular pulses can lead to fast charging. This
study aims at providing a useful theoretical background in view of future
experimental solid-state implementations.
Related papers
- Dissipative dynamics of an open quantum battery in the BTZ spacetime [0.0]
We consider how charging performances of a quantum battery are influenced by the presence of vacuum fluctuations of a quantum field.
Different boundary conditions for quantum field may lead to different charging performance.
Our study presents a general framework to investigate relaxation effects in curved spacetime.
arXiv Detail & Related papers (2024-09-14T02:06:28Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Controlling energy storage crossing quantum phase transitions in an integrable spin quantum battery [0.0]
We investigate the performance of a one-dimensional dimerized XY chain as a spin quantum battery.
We consider a charging protocol relying on the double quench of an internal parameter, namely the strength of the dimerization.
In the latter, the energy stored is almost unaffected by the charging time and the precise values of the charging parameters, provided the quench crosses a quantum phase transition.
arXiv Detail & Related papers (2024-02-14T13:40:48Z) - A quantum battery with quadratic driving [0.0]
Quantum batteries are energy storage devices built using quantum mechanical objects.
We study theoretically a bipartite quantum battery model, composed of a driven charger connected to an energy holder.
arXiv Detail & Related papers (2023-11-04T15:01:36Z) - Qutrit quantum battery: comparing different charging protocols [0.0]
We compare two different charging protocols for three-level quantum batteries based on time dependent classical pulses.
The minimum achieved charging time represents the fastest stable charging reported so far in solid state quantum batteries.
arXiv Detail & Related papers (2023-06-26T09:19:59Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Quantum speed-up in collisional battery charging [0.0]
We present a collision model for the charging of a quantum battery by identical nonequilibrium qubit units.
We show that coherent protocols can yield higher charging power than any possible incoherent strategy.
arXiv Detail & Related papers (2021-05-05T04:28:43Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Feynman Propagator for Interacting Electrons in the Quantum Fokker
Theory [62.997667081978825]
modification consists in adding to the Fokker action its variation generated by the infinitesimal shifts of the proper time parameters.
As a result, the proper time parameters become observable at the quantum level.
arXiv Detail & Related papers (2020-04-19T10:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.