A Federated Learning Framework for Healthcare IoT devices
- URL: http://arxiv.org/abs/2005.05083v1
- Date: Thu, 7 May 2020 22:58:43 GMT
- Title: A Federated Learning Framework for Healthcare IoT devices
- Authors: Binhang Yuan and Song Ge and Wenhui Xing
- Abstract summary: We propose an advanced federated learning framework to train deep neural networks.
The proposed framework guarantees a low accuracy loss, while only requiring 0.2% of the synchronization traffic in vanilla federated learning.
- Score: 2.642698101441705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet of Things (IoT) revolution has shown potential to give rise to
many medical applications with access to large volumes of healthcare data
collected by IoT devices. However, the increasing demand for healthcare data
privacy and security makes each IoT device an isolated island of data. Further,
the limited computation and communication capacity of wearable healthcare
devices restrict the application of vanilla federated learning. To this end, we
propose an advanced federated learning framework to train deep neural networks,
where the network is partitioned and allocated to IoT devices and a centralized
server. Then most of the training computation is handled by the powerful
server. The sparsification of activations and gradients significantly reduces
the communication overhead. Empirical study have suggested that the proposed
framework guarantees a low accuracy loss, while only requiring 0.2% of the
synchronization traffic in vanilla federated learning.
Related papers
- Blockchain Integrated Federated Learning in Edge-Fog-Cloud Systems for IoT based Healthcare Applications A Survey [18.36339203254509]
Federated learning, a new distributed paradigm, supports collaborative learning while preserving privacy.
The integration of federated learning and blockchain is particularly advantageous for handling sensitive data, such as in healthcare.
This survey article explores the architecture, structure, functions, and characteristics of federated learning and blockchain, their applications in various computing paradigms, and evaluates their implementations in healthcare.
arXiv Detail & Related papers (2024-06-08T16:36:48Z) - Privacy-Preserving Edge Federated Learning for Intelligent Mobile-Health Systems [4.082799056366928]
We propose a privacy-preserving edge FL framework for resource-constrained mobile-health and wearable technologies over the IoT infrastructure.
We evaluate our proposed framework extensively and provide the implementation of our technique on Amazon's AWS cloud platform.
arXiv Detail & Related papers (2024-05-09T08:15:31Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - IoT Federated Blockchain Learning at the Edge [14.689706366051956]
We propose a distributed federated learning framework for IoT devices, more specifically for IoMT (Internet of Medical Things)
We use blockchain to allow for a decentralized scheme improving privacy and efficiency over a centralized system.
The system is designed for three paradigms: 1) Training neural networks on IoT devices to allow for collaborative training of a shared model whilst decoupling the learning from the dataset to ensure privacy.
arXiv Detail & Related papers (2023-04-06T11:32:40Z) - Exploring Deep Reinforcement Learning-Assisted Federated Learning for
Online Resource Allocation in EdgeIoT [53.68792408315411]
Federated learning (FL) has been increasingly considered to preserve data training privacy from eavesdropping attacks in mobile edge computing-based Internet of Thing (EdgeIoT)
We propose a new federated learning-enabled twin-delayed deep deterministic policy gradient (FLDLT3) framework to achieve the optimal accuracy and energy balance in a continuous domain.
Numerical results demonstrate that the proposed FL-DLT3 achieves fast convergence (less than 100 iterations) while the FL accuracy-to-energy consumption ratio is improved by 51.8% compared to existing state-of-the-art benchmark.
arXiv Detail & Related papers (2022-02-15T13:36:15Z) - Applications of Machine Learning in Healthcare and Internet of Things
(IOT): A Comprehensive Review [2.1270496914042996]
We present an extensive review of the state-of-the-art machine learning applications particularly in healthcare.
We highlight some open-ended issues of IoT in healthcare that leaves further research studies and investigation for scientists.
arXiv Detail & Related papers (2022-02-06T21:56:39Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures.
We formulate a problem of autonomous maintenance in IoT networks as a Partially Observable Markov Decision Process.
We utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed.
arXiv Detail & Related papers (2020-12-31T11:19:51Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.