Schema-Guided Natural Language Generation
- URL: http://arxiv.org/abs/2005.05480v2
- Date: Wed, 4 Nov 2020 20:33:09 GMT
- Title: Schema-Guided Natural Language Generation
- Authors: Yuheng Du, Shereen Oraby, Vittorio Perera, Minmin Shen, Anjali
Narayan-Chen, Tagyoung Chung, Anu Venkatesh, Dilek Hakkani-Tur
- Abstract summary: We present the novel task ofGuided Natural Language Generation (SG-NLG)
In SG-NLG, the goal is still to generate a natural language prompt, but in SG-NLG, the input MRs are paired with rich schemata providing contextual information.
We train different state-of-the-art models for neural natural language generation on this dataset and show that in many cases, including rich schema information allows our models to produce higher quality outputs.
- Score: 13.11874946084068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network based approaches to data-to-text natural language generation
(NLG) have gained popularity in recent years, with the goal of generating a
natural language prompt that accurately realizes an input meaning
representation. To facilitate the training of neural network models,
researchers created large datasets of paired utterances and their meaning
representations. However, the creation of such datasets is an arduous task and
they mostly consist of simple meaning representations composed of slot and
value tokens to be realized. These representations do not include any
contextual information that an NLG system can use when trying to generalize,
such as domain information and descriptions of slots and values. In this paper,
we present the novel task of Schema-Guided Natural Language Generation
(SG-NLG). Here, the goal is still to generate a natural language prompt, but in
SG-NLG, the input MRs are paired with rich schemata providing contextual
information. To generate a dataset for SG-NLG we re-purpose an existing dataset
for another task: dialog state tracking, which includes a large and rich schema
spanning multiple different attributes, including information about the domain,
user intent, and slot descriptions. We train different state-of-the-art models
for neural natural language generation on this dataset and show that in many
cases, including rich schema information allows our models to produce higher
quality outputs both in terms of semantics and diversity. We also conduct
experiments comparing model performance on seen versus unseen domains, and
present a human evaluation demonstrating high ratings for overall output
quality.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - Empower Text-Attributed Graphs Learning with Large Language Models
(LLMs) [5.920353954082262]
We propose a plug-and-play approach to empower text-attributed graphs through node generation using Large Language Models (LLMs)
We employ an edge predictor to capture the structural information inherent in the raw dataset and integrate the newly generated samples into the original graph.
Experiments demonstrate the outstanding performance of our proposed paradigm, particularly in low-shot scenarios.
arXiv Detail & Related papers (2023-10-15T16:04:28Z) - Using Large Language Models for Zero-Shot Natural Language Generation
from Knowledge Graphs [4.56877715768796]
We show that ChatGPT achieves near state-of-the-art performance on some measures of the WebNLG 2020 challenge.
We also show that there is a significant connection between what the LLM already knows about the data it is parsing and the quality of the output text.
arXiv Detail & Related papers (2023-07-14T12:45:03Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - WANLI: Worker and AI Collaboration for Natural Language Inference
Dataset Creation [101.00109827301235]
We introduce a novel paradigm for dataset creation based on human and machine collaboration.
We use dataset cartography to automatically identify examples that demonstrate challenging reasoning patterns, and instruct GPT-3 to compose new examples with similar patterns.
The resulting dataset, WANLI, consists of 108,357 natural language inference (NLI) examples that present unique empirical strengths.
arXiv Detail & Related papers (2022-01-16T03:13:49Z) - AUGNLG: Few-shot Natural Language Generation using Self-trained Data
Augmentation [26.016540126949103]
This paper proposes AUGNLG, a novel data augmentation approach that combines a self-trained neural retrieval model with a few-shot learned NLU model.
The proposed system mostly outperforms the state-of-the-art methods on the FewShotWOZ data in both BLEU and Slot Error Rate.
arXiv Detail & Related papers (2021-06-10T08:45:28Z) - e-ViL: A Dataset and Benchmark for Natural Language Explanations in
Vision-Language Tasks [52.918087305406296]
We introduce e-ViL, a benchmark for evaluate explainable vision-language tasks.
We also introduce e-SNLI-VE, the largest existing dataset with NLEs.
We propose a new model that combines UNITER, which learns joint embeddings of images and text, and GPT-2, a pre-trained language model.
arXiv Detail & Related papers (2021-05-08T18:46:33Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Few-shot Natural Language Generation for Task-Oriented Dialog [113.07438787659859]
We present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems.
We develop the SC-GPT model, which is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability.
Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods.
arXiv Detail & Related papers (2020-02-27T18:48:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.