論文の概要: Detecting CNN-Generated Facial Images in Real-World Scenarios
- arxiv url: http://arxiv.org/abs/2005.05632v1
- Date: Tue, 12 May 2020 09:18:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 19:17:54.750118
- Title: Detecting CNN-Generated Facial Images in Real-World Scenarios
- Title(参考訳): 実世界シナリオにおけるCNN生成顔画像の検出
- Authors: Nils Hulzebosch, Sarah Ibrahimi, Marcel Worring
- Abstract要約: 本研究では,実環境下での検出手法を評価するためのフレームワークを提案する。
また,提案フレームワークを用いた最先端検出手法の評価を行った。
この結果から,CNNに基づく検出手法は実世界のシナリオで使用するには不十分であることが示唆された。
- 参考スコア(独自算出の注目度): 15.755089410308647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial, CNN-generated images are now of such high quality that humans
have trouble distinguishing them from real images. Several algorithmic
detection methods have been proposed, but these appear to generalize poorly to
data from unknown sources, making them infeasible for real-world scenarios. In
this work, we present a framework for evaluating detection methods under
real-world conditions, consisting of cross-model, cross-data, and
post-processing evaluation, and we evaluate state-of-the-art detection methods
using the proposed framework. Furthermore, we examine the usefulness of
commonly used image pre-processing methods. Lastly, we evaluate human
performance on detecting CNN-generated images, along with factors that
influence this performance, by conducting an online survey. Our results suggest
that CNN-based detection methods are not yet robust enough to be used in
real-world scenarios.
- Abstract(参考訳): 人工的なcnn生成画像は高品質で、人間が実際の画像と区別するのに苦労している。
いくつかのアルゴリズム検出法が提案されているが、これらは未知の情報源からのデータにあまり一般化せず、現実のシナリオでは実現不可能である。
本研究では, クロスモデル, クロスデータ, 後処理評価からなる実世界の状況下での検知手法を評価するためのフレームワークを提案し, 提案フレームワークを用いた最先端検出手法の評価を行う。
さらに,一般的な画像前処理法の有用性について検討した。
最後に、オンライン調査を行うことで、CNN生成画像の検出における人的パフォーマンスと、このパフォーマンスに影響を与える要因を評価する。
この結果から,CNNに基づく検出手法は実世界のシナリオで使用するには不十分であることが示唆された。
関連論文リスト
- Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
本研究では,実際の画像と区別できない画像の新たな検出方法を提案する。
本手法は、既知の生成モデルから画像を検出し、微調整された生成モデル間の関係を確立することができる。
本手法は,Stable Diffusion とMidversa が生成した画像に対して,最先端の事前学習検出手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2023-03-19T20:31:38Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
視覚認識のためのCNNモデルを学習するための新しい「デカップリング・ミクスアップ」手法を提案する。
本手法は,各画像を識別領域と雑音発生領域に分離し,これらの領域を均一に組み合わせてCNNモデルを訓練する。
実験結果から,未知のコンテキストからなるデータに対する本手法の高一般化性能を示す。
論文 参考訳(メタデータ) (2022-10-26T15:21:39Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
特に畳み込みニューラルネットワーク(CNN)を用いた単一画像超解像技術が出現している
本研究では, 虹彩認識のためのCNNを用いて, 単一画像の超解像を探索する。
彼らは、近赤外線虹彩画像の1.872のデータベースと携帯電話画像データベースのアプローチを検証する。
論文 参考訳(メタデータ) (2022-10-24T11:19:18Z) - Evaluation of Pre-Trained CNN Models for Geographic Fake Image Detection [20.41074415307636]
我々は偽の衛星画像の出現を目撃しており、それは誤解を招く可能性があるし、国家の安全を脅かすかもしれない。
衛星画像検出のためのいくつかの畳み込みニューラルネットワーク(CNN)アーキテクチャの適合性について検討する。
この研究により、新たなベースラインの確立が可能となり、偽衛星画像検出のためのCNNベースの手法の開発に有用かもしれない。
論文 参考訳(メタデータ) (2022-10-01T20:37:24Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - A comparison of different atmospheric turbulence simulation methods for
image restoration [64.24948495708337]
大気の乱流は、長距離イメージングシステムによって捉えられた画像の品質を悪化させる。
深層学習に基づく大気乱流緩和法が文献で提案されている。
様々な乱流シミュレーション手法が画像復元に与える影響を系統的に評価した。
論文 参考訳(メタデータ) (2022-04-19T16:21:36Z) - On Improving Cross-dataset Generalization of Deepfake Detectors [1.0152838128195467]
ディープフェイクによる顔の操作は、大きなセキュリティリスクを引き起こし、深刻な社会的懸念を引き起こしている。
我々は、教師付きおよび強化学習(RL)のハイブリッド組み合わせとして深層偽検出を定式化し、そのクロスデータセット一般化性能を改善する。
提案手法は,ディープフェイク検出器のクロスデータセット一般化における既存の研究よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-08T20:34:53Z) - A Study for Universal Adversarial Attacks on Texture Recognition [19.79803434998116]
テストされたテクスチャデータセットの80%以上で、ディープラーニングモデルを騙すことができる画像非依存/普遍的摂動が存在することを示す。
テストデータセット上の様々な攻撃手法を用いた計算摂動は、概して準知覚可能であり、低、中、高周波数成分の構造化パターンを含む。
論文 参考訳(メタデータ) (2020-10-04T08:11:11Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNNに基づく画像デライニング手法は,再現誤差や視覚的品質の点で優れた性能を発揮している。
実世界の完全ラベル付き画像デライニングデータセットを取得する上での課題により、既存の手法は合成されたデータのみに基づいて訓練される。
本稿では,ガウス過程に基づく半教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T00:33:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。