論文の概要: Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis
- arxiv url: http://arxiv.org/abs/2303.10762v4
- Date: Thu, 11 Jul 2024 07:24:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-13 00:07:09.758173
- Title: Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis
- Title(参考訳): 深部画像フィンガープリント:低予算合成画像検出とモデル線形解析を目指して
- Authors: Sergey Sinitsa, Ohad Fried,
- Abstract要約: 本研究では,実際の画像と区別できない画像の新たな検出方法を提案する。
本手法は、既知の生成モデルから画像を検出し、微調整された生成モデル間の関係を確立することができる。
本手法は,Stable Diffusion とMidversa が生成した画像に対して,最先端の事前学習検出手法に匹敵する性能を実現する。
- 参考スコア(独自算出の注目度): 8.777277201807351
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The generation of high-quality images has become widely accessible and is a rapidly evolving process. As a result, anyone can generate images that are indistinguishable from real ones. This leads to a wide range of applications, including malicious usage with deceptive intentions. Despite advances in detection techniques for generated images, a robust detection method still eludes us. Furthermore, model personalization techniques might affect the detection capabilities of existing methods. In this work, we utilize the architectural properties of convolutional neural networks (CNNs) to develop a new detection method. Our method can detect images from a known generative model and enable us to establish relationships between fine-tuned generative models. We tested the method on images produced by both Generative Adversarial Networks (GANs) and recent large text-to-image models (LTIMs) that rely on Diffusion Models. Our approach outperforms others trained under identical conditions and achieves comparable performance to state-of-the-art pre-trained detection methods on images generated by Stable Diffusion and MidJourney, with significantly fewer required train samples.
- Abstract(参考訳): 高品質な画像の生成は、広くアクセスしやすくなり、急速に進化するプロセスである。
その結果、誰でも実際のものと区別できない画像を生成することができる。
このことは、偽りの意図を持つ悪意のある使用を含む、幅広いアプリケーションにつながります。
生成画像の検出技術が進歩しているにもかかわらず、ロバストな検出手法はいまだに我々を逃がしている。
さらに、モデルパーソナライズ技術は既存の手法の検出能力に影響を与える可能性がある。
本研究では,畳み込みニューラルネットワーク(CNN)のアーキテクチャ特性を利用して,新しい検出手法を提案する。
本手法は、既知の生成モデルから画像を検出し、微調整された生成モデル間の関係を確立することができる。
本手法は,GAN(Generative Adversarial Networks)とDiffusion Modelsに依存する最近の大規模テキスト画像モデル(LTIM)の両方で生成した画像に対して検証を行った。
提案手法は,Stable DiffusionとMidJourneyが生成した画像に対して,同じ条件下で訓練された他者より優れ,最先端の事前訓練検出手法に匹敵する性能を実現している。
関連論文リスト
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
汎用合成画像検出器 Time Step Generating (TSG) を提案する。
TSGは、事前訓練されたモデルの再構築能力、特定のデータセット、サンプリングアルゴリズムに依存していない。
我々は,提案したTSGを大規模GenImageベンチマークで検証し,精度と一般化性の両方において大幅な改善を実現した。
論文 参考訳(メタデータ) (2024-11-17T09:39:50Z) - Detecting AutoEncoder is Enough to Catch LDM Generated Images [0.0]
本稿では,自己エンコーダが導入したアーティファクトを識別することで,LDM(Latent Diffusion Models)によって生成された画像を検出する手法を提案する。
LDMオートエンコーダによって再構成された画像と実際の画像とを区別するように検出器を訓練することにより、直接トレーニングすることなく、生成された画像を検出することができる。
実験の結果,最小限の偽陽性で高い検出精度を示し,この手法は偽画像と戦うための有望なツールとなる。
論文 参考訳(メタデータ) (2024-11-10T12:17:32Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - How to Trace Latent Generative Model Generated Images without Artificial Watermark? [88.04880564539836]
潜在生成モデルによって生成された画像に関する潜在的な誤用に関する懸念が持ち上がっている。
検査されたモデルの生成された画像をトレースするために,レイトタントトラッカーと呼ばれる潜時反転に基づく手法を提案する。
提案手法は,検査したモデルと他の画像から生成された画像とを高精度かつ効率的に識別できることを示す。
論文 参考訳(メタデータ) (2024-05-22T05:33:47Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
拡散モデル(DM)は画像生成に革命をもたらし、様々な分野にまたがる高品質な画像を生成する。
超現実的画像を作成する能力は、現実的コンテンツと合成的コンテンツを区別する上で大きな課題となる。
この研究は、CLIPモデルによって抽出された画像とテキストの特徴をMLP(Multilayer Perceptron)分類器と統合する堅牢な検出フレームワークを導入する。
論文 参考訳(メタデータ) (2024-04-19T14:30:41Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Generalizable Synthetic Image Detection via Language-guided Contrastive
Learning [22.4158195581231]
偽ニュースの拡散や偽のプロフィールの作成などの合成画像の真偽の使用は、画像の真正性に関する重要な懸念を提起する。
本稿では,言語指導によるコントラスト学習と検出問題の新たな定式化による,シンプルで効果的な合成画像検出手法を提案する。
提案したLanguAge-guided SynThEsis Detection (LASTED) モデルでは,画像生成モデルに対する一般化性が大幅に向上していることが示されている。
論文 参考訳(メタデータ) (2023-05-23T08:13:27Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。