Very High Resolution Land Cover Mapping of Urban Areas at Global Scale
with Convolutional Neural Networks
- URL: http://arxiv.org/abs/2005.05652v1
- Date: Tue, 12 May 2020 10:03:20 GMT
- Title: Very High Resolution Land Cover Mapping of Urban Areas at Global Scale
with Convolutional Neural Networks
- Authors: Thomas Tilak (1), Arnaud Braun (1), David Chandler (1), Nicolas David
(1), Sylvain Galopin (1), Am\'elie Lombard (2), Micha\"el Michaud (1),
Camille Parisel (1), Matthieu Porte (1), and Marjorie Robert (1) ((1)
Institut National de l'Information G\'eographique et Foresti\`ere, (2)
CEREMA)
- Abstract summary: This paper describes a methodology to produce a 7-classes land cover map of urban areas from very high resolution images and limited noisy labeled data.
We created a training dataset on a few areas of interest aggregating databases, semi-automatic classification, and manual annotation to get a complete ground truth in each class.
The final product is a highly valuable land cover map computed from model predictions stitched together, binarized, and refined before vectorization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper describes a methodology to produce a 7-classes land cover map of
urban areas from very high resolution images and limited noisy labeled data.
The objective is to make a segmentation map of a large area (a french
department) with the following classes: asphalt, bare soil, building,
grassland, mineral material (permeable artificialized areas), forest and water
from 20cm aerial images and Digital Height Model. We created a training dataset
on a few areas of interest aggregating databases, semi-automatic
classification, and manual annotation to get a complete ground truth in each
class. A comparative study of different encoder-decoder architectures (U-Net,
U-Net with Resnet encoders, Deeplab v3+) is presented with different loss
functions. The final product is a highly valuable land cover map computed from
model predictions stitched together, binarized, and refined before
vectorization.
Related papers
- FRACTAL: An Ultra-Large-Scale Aerial Lidar Dataset for 3D Semantic Segmentation of Diverse Landscapes [0.0]
We present an ultra-large-scale aerial Lidar dataset made of 100,000 dense point clouds with high quality labels for 7 semantic classes.
We describe the data collection, annotation, and curation process of the dataset.
We provide baseline semantic segmentation results using a state of the art 3D point cloud classification model.
arXiv Detail & Related papers (2024-05-07T19:37:22Z) - Generalized Few-Shot Meets Remote Sensing: Discovering Novel Classes in Land Cover Mapping via Hybrid Semantic Segmentation Framework [9.803861474101957]
We propose a few-shot segmentation-based framework, named SegLand, to update novel classes in high-resolution land-cover mapping.
The framework has won first place in the leaderboard of the OpenEarthMap Land Cover Mapping Few-Shot Challenge.
arXiv Detail & Related papers (2024-04-19T09:01:58Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization.
We propose a new dataset, Navya 3D (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain.
It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds.
arXiv Detail & Related papers (2023-02-16T13:41:19Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
We introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km2.
Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset.
arXiv Detail & Related papers (2022-01-12T14:48:11Z) - LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic
Segmentation [7.629717457706323]
LoveDA dataset contains 5987 HSR images with 166 annotated objects from three different cities.
LoveDA dataset is suitable for both land-cover semantic segmentation and unsupervised domain adaptation (UDA) tasks.
arXiv Detail & Related papers (2021-10-17T06:12:48Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HD maps are maps with precise definitions of road lanes with rich semantics of the traffic rules.
There are only a small amount of real-world road topologies and geometries, which significantly limits our ability to test out the self-driving stack.
We propose HDMapGen, a hierarchical graph generation model capable of producing high-quality and diverse HD maps.
arXiv Detail & Related papers (2021-06-28T17:59:30Z) - A hierarchical deep learning framework for the consistent classification
of land use objects in geospatial databases [8.703408520845645]
In this paper, a hierarchical deep learning framework is proposed to verify the land use information.
A new CNN-based method is proposed aiming to predict land use in multiple levels hierarchically and simultaneously.
Experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%.
arXiv Detail & Related papers (2021-04-14T17:16:35Z) - Semi-Supervised Semantic Segmentation in Earth Observation: The
MiniFrance Suite, Dataset Analysis and Multi-task Network Study [82.02173199363571]
We introduce a novel large-scale dataset for semi-supervised semantic segmentation in Earth Observation, the MiniFrance suite.
MiniFrance has several unprecedented properties: it is large-scale, containing over 2000 very high resolution aerial images, accounting for more than 200 billions samples (pixels)
We present tools for data representativeness analysis in terms of appearance similarity and a thorough study of MiniFrance data, demonstrating that it is suitable for learning and generalizes well in a semi-supervised setting.
arXiv Detail & Related papers (2020-10-15T15:36:58Z) - Land Cover Semantic Segmentation Using ResUNet [0.0]
We present our work on developing an automated system for land cover classification.
This system takes a multiband satellite image of an area as input and outputs the land cover map of the area at the same resolution as the input.
For this purpose convolutional machine learning models were trained in the task of predicting the land cover semantic segmentation of satellite images.
arXiv Detail & Related papers (2020-10-13T10:56:09Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.