HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps
- URL: http://arxiv.org/abs/2106.14880v1
- Date: Mon, 28 Jun 2021 17:59:30 GMT
- Title: HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps
- Authors: Lu Mi, Hang Zhao, Charlie Nash, Xiaohan Jin, Jiyang Gao, Chen Sun,
Cordelia Schmid, Nir Shavit, Yuning Chai, Dragomir Anguelov
- Abstract summary: HD maps are maps with precise definitions of road lanes with rich semantics of the traffic rules.
There are only a small amount of real-world road topologies and geometries, which significantly limits our ability to test out the self-driving stack.
We propose HDMapGen, a hierarchical graph generation model capable of producing high-quality and diverse HD maps.
- Score: 81.86923212296863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High Definition (HD) maps are maps with precise definitions of road lanes
with rich semantics of the traffic rules. They are critical for several key
stages in an autonomous driving system, including motion forecasting and
planning. However, there are only a small amount of real-world road topologies
and geometries, which significantly limits our ability to test out the
self-driving stack to generalize onto new unseen scenarios. To address this
issue, we introduce a new challenging task to generate HD maps. In this work,
we explore several autoregressive models using different data representations,
including sequence, plain graph, and hierarchical graph. We propose HDMapGen, a
hierarchical graph generation model capable of producing high-quality and
diverse HD maps through a coarse-to-fine approach. Experiments on the Argoverse
dataset and an in-house dataset show that HDMapGen significantly outperforms
baseline methods. Additionally, we demonstrate that HDMapGen achieves high
scalability and efficiency.
Related papers
- DeepAerialMapper: Deep Learning-based Semi-automatic HD Map Creation for Highly Automated Vehicles [0.0]
We introduce a semi-automatic method for creating HD maps from high-resolution aerial imagery.
Our method involves training neural networks to semantically segment aerial images into classes relevant to HD maps.
Exporting the map to the Lanelet2 format allows easy extension for different use cases.
arXiv Detail & Related papers (2024-10-01T15:05:05Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) maps are more affordable and have worldwide coverage, offering a scalable alternative.
We propose a novel framework to integrate SD maps into online map prediction and propose a Transformer-based encoder, SD Map Representations from transFormers.
This enhancement consistently and significantly boosts (by up to 60%) lane detection and topology prediction on current state-of-the-art online map prediction methods.
arXiv Detail & Related papers (2023-11-07T15:42:22Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
We introduce a newization-based evaluation metric, which has superior sensitivity and is better suited to real-world autonomous driving scenarios.
We also propose MapVR (Map Vectorization via Rasterization), a novel framework that applies differentiableization to preciseized outputs and then performs geometry-aware supervision on HD maps.
arXiv Detail & Related papers (2023-06-18T08:51:14Z) - InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning [6.062751776009753]
We propose online HD map learning framework that detects HD map elements from onboard sensor observations.
InstaGraM, instance-level graph modeling of HD map brings accurate and fast end-to-end vectorized HD map learning.
Our proposed network outperforms previous models by up to 13.7 mAP with up to 33.8X faster time.
arXiv Detail & Related papers (2023-01-10T08:15:35Z) - SuperFusion: Multilevel LiDAR-Camera Fusion for Long-Range HD Map Generation [13.840020080021292]
We propose a novel network named SuperFusion, exploiting the fusion of LiDAR and camera data at multiple levels.
We benchmark our SuperFusion on the nuScenes dataset and a self-recorded dataset and show that it outperforms the state-of-the-art baseline methods.
arXiv Detail & Related papers (2022-11-28T18:59:02Z) - csBoundary: City-scale Road-boundary Detection in Aerial Images for
High-definition Maps [10.082536828708779]
We propose csBoundary to automatically detect road boundaries at the city scale for HD map annotation.
Our network takes as input an aerial image patch, and directly infers the continuous road-boundary graph from this image.
Our csBoundary is evaluated and compared on a public benchmark dataset.
arXiv Detail & Related papers (2021-11-11T02:04:36Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HD map construction is a crucial problem for autonomous driving.
Traditional HD maps are coupled with centimeter-level accurate localization which is unreliable in many scenarios.
Online map learning is a more scalable way to provide semantic and geometry priors to self-driving vehicles.
arXiv Detail & Related papers (2021-07-13T18:06:46Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3 is an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command.
We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations.
arXiv Detail & Related papers (2021-01-18T00:09:30Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
We focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges.
We formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries.
We show the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.
arXiv Detail & Related papers (2020-12-22T21:58:57Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
We show that High-Definition (HD) maps provide strong priors that can boost the performance and robustness of modern 3D object detectors.
We design a single stage detector that extracts geometric and semantic features from the HD maps.
As maps might not be available everywhere, we also propose a map prediction module that estimates the map on the fly from raw LiDAR data.
arXiv Detail & Related papers (2020-12-21T21:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.