論文の概要: Smooth Exploration for Robotic Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2005.05719v2
- Date: Sun, 20 Jun 2021 09:49:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 18:42:23.523527
- Title: Smooth Exploration for Robotic Reinforcement Learning
- Title(参考訳): ロボット強化学習のための円滑な探索
- Authors: Antonin Raffin, Jens Kober, Freek Stulp
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、ロボットが現実世界との対話からスキルを学ぶことを可能にする。
実際には、Deep RLで使用される非構造的なステップベースの探索は、実際のロボットにジャーキーな動きパターンをもたらす。
本稿では、状態依存探索(SDE)を現在のDeep RLアルゴリズムに適応させることにより、これらの問題に対処する。
- 参考スコア(独自算出の注目度): 11.215352918313577
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reinforcement learning (RL) enables robots to learn skills from interactions
with the real world. In practice, the unstructured step-based exploration used
in Deep RL -- often very successful in simulation -- leads to jerky motion
patterns on real robots. Consequences of the resulting shaky behavior are poor
exploration, or even damage to the robot. We address these issues by adapting
state-dependent exploration (SDE) to current Deep RL algorithms. To enable this
adaptation, we propose two extensions to the original SDE, using more general
features and re-sampling the noise periodically, which leads to a new
exploration method generalized state-dependent exploration (gSDE). We evaluate
gSDE both in simulation, on PyBullet continuous control tasks, and directly on
three different real robots: a tendon-driven elastic robot, a quadruped and an
RC car. The noise sampling interval of gSDE permits to have a compromise
between performance and smoothness, which allows training directly on the real
robots without loss of performance. The code is available at
https://github.com/DLR-RM/stable-baselines3.
- Abstract(参考訳): 強化学習(rl)は、ロボットが現実世界とのインタラクションからスキルを学習することを可能にする。
実際には、深層rlで使用される非構造的なステップベースの探索は、しばしばシミュレーションで非常に成功し、実際のロボットの不安定な動きパターンに繋がる。
結果として生じる不安定な行動の結果は、探索の貧弱さや、ロボットにダメージを与えることさえある。
本稿では、状態依存探索(SDE)を現在のDeep RLアルゴリズムに適応させることにより、これらの問題に対処する。
この適応を可能にするために,より汎用的な特徴を用い,ノイズを周期的に再サンプリングする2つのsde拡張を提案し,新たな探索法である一般化状態依存探索 (gsde) を提案する。
我々は、シミュレーション、PyBullet連続制御タスク、および、腱駆動弾性ロボット、四輪車、RCカーの3つの異なる現実ロボット上で、gSDEを評価した。
gSDEのノイズサンプリング間隔は、性能と滑らかさを妥協させ、パフォーマンスを損なうことなく実際のロボットを直接訓練することができる。
コードはhttps://github.com/dlr-rm/stable-baselines3で入手できる。
関連論文リスト
- Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Quality-Diversity Optimisation on a Physical Robot Through
Dynamics-Aware and Reset-Free Learning [4.260312058817663]
本研究では,リセットフリーQD(RF-QD)アルゴリズムを用いて,物理ロボット上で直接コントローラを学習する。
本手法は,ロボットと環境との相互作用から学習したダイナミクスモデルを用いて,ロボットの動作を予測する。
RF-QDには、ロボットが外を歩いたときに安全なゾーンに戻すリカバリポリシーも含まれており、継続的な学習を可能にしている。
論文 参考訳(メタデータ) (2023-04-24T13:24:00Z) - Domain Randomization for Robust, Affordable and Effective Closed-loop
Control of Soft Robots [10.977130974626668]
ソフトロボットは、コンタクトや適応性に対する本質的な安全性によって人気を集めている。
本稿では、ソフトロボットのRLポリシーを強化することにより、ドメインランダム化(DR)がこの問題を解決する方法を示す。
本稿では,変形可能なオブジェクトに対する動的パラメータの自動推論のための,従来の適応的領域ランダム化手法に対する新しいアルゴリズム拡張を提案する。
論文 参考訳(メタデータ) (2023-03-07T18:50:00Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
アクチュエータレベルでの不正確なトルクトラッキングから生じるヒューマノイドロボットのシム2リアルギャップ問題を克服するためのアプローチを提案する。
提案手法は、実際のHRP-5Pヒューマノイドロボットに展開して二足歩行を実現するシミュレーションにおいて、一貫したエンドツーエンドのポリシーをトレーニングする。
論文 参考訳(メタデータ) (2023-03-07T08:16:46Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z) - Robust Reinforcement Learning-based Autonomous Driving Agent for
Simulation and Real World [0.0]
本稿では,Deep Q-Networks (DQN) を用いた自律型ロボット制御を実現するDRLベースのアルゴリズムを提案する。
本手法では,エージェントはシミュレーション環境で訓練され,シミュレーション環境と実環境環境の両方をナビゲートすることができる。
トレーニングされたエージェントは限られたハードウェアリソース上で動作することができ、そのパフォーマンスは最先端のアプローチに匹敵する。
論文 参考訳(メタデータ) (2020-09-23T15:23:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。