論文の概要: SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots
- arxiv url: http://arxiv.org/abs/2108.01262v1
- Date: Tue, 3 Aug 2021 02:56:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 14:02:55.894378
- Title: SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots
- Title(参考訳): saber: 不均一ロボットの自律走行のためのデータ駆動モーションプランナー
- Authors: Alexander Schperberg, Stephanie Tsuei, Stefano Soatto, Dennis Hong
- Abstract要約: 我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
- 参考スコア(独自算出の注目度): 112.2491765424719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an end-to-end online motion planning framework that uses a
data-driven approach to navigate a heterogeneous robot team towards a global
goal while avoiding obstacles in uncertain environments. First, we use
stochastic model predictive control (SMPC) to calculate control inputs that
satisfy robot dynamics, and consider uncertainty during obstacle avoidance with
chance constraints. Second, recurrent neural networks are used to provide a
quick estimate of future state uncertainty considered in the SMPC finite-time
horizon solution, which are trained on uncertainty outputs of various
simultaneous localization and mapping algorithms. When two or more robots are
in communication range, these uncertainties are then updated using a
distributed Kalman filtering approach. Lastly, a Deep Q-learning agent is
employed to serve as a high-level path planner, providing the SMPC with target
positions that move the robots towards a desired global goal. Our complete
methods are demonstrated on a ground and aerial robot simultaneously (code
available at: https://github.com/AlexS28/SABER).
- Abstract(参考訳): 我々は,異種ロボットチームをグローバル目標に向かって移動させながら,不確定な環境での障害を回避するためのデータ駆動アプローチを用いた,エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
まず,確率モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
第二に、リカレントニューラルネットワークはSMPC有限時間地平線解における将来の不確かさを素早く推定するために用いられ、様々な同時局所化およびマッピングアルゴリズムの不確実性出力に基づいて訓練される。
2つ以上のロボットが通信範囲内にある場合、これらの不確実性は分散カルマンフィルタリングアプローチによって更新される。
最後に、ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
本手法は地上と空中のロボットで同時に実証される(コード:https://github.com/AlexS28/SABER)。
関連論文リスト
- Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
ラベルなしの動作計画では、衝突回避を確保しながら、ロボットのセットを目標の場所に割り当てる。
この問題は、探査、監視、輸送などの応用において、マルチロボットシステムにとって不可欠なビルディングブロックを形成している。
この問題に対処するために、各ロボットは、その400ドルのアネレストロボットと$k$アネレストターゲットの位置のみを知っている分散環境で対処する。
論文 参考訳(メタデータ) (2024-09-29T23:57:25Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
本稿では,ロボットのポーズ,障害物マップ,ロボットのフットプリントに基づいて,異なる衝突コストを返却するニューラルネットワークモデルを提案する。
私たちのアーキテクチャには、障害物マップとロボットフットプリントを埋め込みに変換するニューラルイメージエンコーダが含まれています。
Husky UGVモバイルロボットの実験は、我々のアプローチがリアルタイムで安全なローカルプランニングを可能にすることを示した。
論文 参考訳(メタデータ) (2023-10-25T05:00:21Z) - Intelligent Trajectory Design for RIS-NOMA aided Multi-robot
Communications [59.34642007625687]
目的は,ロボットの軌道とNOMA復号命令を協調的に最適化することで,マルチロボットシステムにおける全軌道の総和率を最大化することである。
ARIMAモデルとDouble Deep Q-network (D$3$QN)アルゴリズムを組み合わせたML方式を提案する。
論文 参考訳(メタデータ) (2022-05-03T17:14:47Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
ロボットがチームサブモジュールの目的を最大化するために共同で行動を選択する必要があるアプリケーションに焦点を当てる。
分散通信によるサブモジュール化に向けた汎用学習アーキテクチャを提案する。
大規模ロボットネットワークによるアクティブターゲットカバレッジのシナリオにおいて、GNNベースの学習アプローチのパフォーマンスを実証します。
論文 参考訳(メタデータ) (2021-05-18T15:32:07Z) - Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments [10.345048137438623]
本稿では、リカレントニューラルネットワーク(RNN)に基づく新しい軌道予測モデルを提案する。
次に,軌道予測モデルをマルチロボット衝突回避のための分散モデル予測制御(MPC)フレームワークに組み込む。
論文 参考訳(メタデータ) (2021-02-10T11:11:08Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Autonomous Exploration Under Uncertainty via Deep Reinforcement Learning
on Graphs [5.043563227694137]
本研究では,移動ロボットが事前の未知環境におけるランドマークの正確なマッピングをリアルタイムで効率的に行うという自律的な探索問題を考察する。
本稿では,グラフニューラルネットワーク(GNN)と深部強化学習(DRL)を併用した新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-24T16:50:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。