Neural Architecture Transfer
- URL: http://arxiv.org/abs/2005.05859v2
- Date: Mon, 22 Mar 2021 00:32:53 GMT
- Title: Neural Architecture Transfer
- Authors: Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang Banzhaf,
Kalyanmoy Deb, and Vishnu Naresh Boddeti
- Abstract summary: Existing approaches require one complete search for each deployment specification of hardware or objective.
We propose Neural Architecture Transfer (NAT) to overcome this limitation.
NAT is designed to efficiently generate task-specific custom models that are competitive under multiple conflicting objectives.
- Score: 20.86857986471351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural architecture search (NAS) has emerged as a promising avenue for
automatically designing task-specific neural networks. Existing NAS approaches
require one complete search for each deployment specification of hardware or
objective. This is a computationally impractical endeavor given the potentially
large number of application scenarios. In this paper, we propose Neural
Architecture Transfer (NAT) to overcome this limitation. NAT is designed to
efficiently generate task-specific custom models that are competitive under
multiple conflicting objectives. To realize this goal we learn task-specific
supernets from which specialized subnets can be sampled without any additional
training. The key to our approach is an integrated online transfer learning and
many-objective evolutionary search procedure. A pre-trained supernet is
iteratively adapted while simultaneously searching for task-specific subnets.
We demonstrate the efficacy of NAT on 11 benchmark image classification tasks
ranging from large-scale multi-class to small-scale fine-grained datasets. In
all cases, including ImageNet, NATNets improve upon the state-of-the-art under
mobile settings ($\leq$ 600M Multiply-Adds). Surprisingly, small-scale
fine-grained datasets benefit the most from NAT. At the same time, the
architecture search and transfer is orders of magnitude more efficient than
existing NAS methods. Overall, the experimental evaluation indicates that,
across diverse image classification tasks and computational objectives, NAT is
an appreciably more effective alternative to conventional transfer learning of
fine-tuning weights of an existing network architecture learned on standard
datasets. Code is available at
https://github.com/human-analysis/neural-architecture-transfer
Related papers
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
We develop a family of models with the distilling neural architecture (DNA) techniques.
Our proposed DNA models can rate all architecture candidates, as opposed to previous works that can only access a sub- search space using algorithms.
Our models achieve state-of-the-art top-1 accuracy of 78.9% and 83.6% on ImageNet for a mobile convolutional network and a small vision transformer, respectively.
arXiv Detail & Related papers (2024-03-02T22:16:47Z) - OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural
Architecture Search [79.36688444492405]
Once-for-All (OFA) is a Neural Architecture Search (NAS) framework designed to address the problem of searching efficient architectures for devices with different resources constraints.
We aim to give one step further in the search for efficiency by explicitly conceiving the search stage as a multi-objective optimization problem.
arXiv Detail & Related papers (2023-03-23T21:30:29Z) - Evolutionary Neural Cascade Search across Supernetworks [68.8204255655161]
We introduce ENCAS - Evolutionary Neural Cascade Search.
ENCAS can be used to search over multiple pretrained supernetworks.
We test ENCAS on common computer vision benchmarks.
arXiv Detail & Related papers (2022-03-08T11:06:01Z) - Across-Task Neural Architecture Search via Meta Learning [1.225795556154044]
Adequate labeled data and expensive compute resources are the prerequisites for the success of neural architecture search(NAS)
It is challenging to apply NAS in meta-learning scenarios with limited compute resources and data.
In this paper, an across-task neural architecture search (AT-NAS) is proposed to address the problem through combining gradient-based meta-learning with EA-based NAS.
arXiv Detail & Related papers (2021-10-12T09:07:33Z) - Generic Neural Architecture Search via Regression [27.78105839644199]
We propose a novel and generic neural architecture search (NAS) framework, termed Generic NAS (GenNAS)
GenNAS does not use task-specific labels but instead adopts textitregression on a set of manually designed synthetic signal bases for architecture evaluation.
We then propose an automatic task search to optimize the combination of synthetic signals using limited downstream-task-specific labels.
arXiv Detail & Related papers (2021-08-04T08:21:12Z) - Rapid Neural Architecture Search by Learning to Generate Graphs from
Datasets [42.993720854755736]
We propose an efficient Neural Search (NAS) framework that is trained once on a database consisting of datasets and pretrained networks.
We show that our model meta-learned on subsets of ImageNet-1K and architectures from NAS-Bench 201 search space successfully generalizes to multiple unseen datasets.
arXiv Detail & Related papers (2021-07-02T06:33:59Z) - Learning Versatile Neural Architectures by Propagating Network Codes [74.2450894473073]
We propose a novel "neural predictor", which is able to predict an architecture's performance in multiple datasets and tasks.
NCP learns from network codes but not original data, enabling it to update the architecture efficiently across datasets.
arXiv Detail & Related papers (2021-03-24T15:20:38Z) - Task-Adaptive Neural Network Retrieval with Meta-Contrastive Learning [34.27089256930098]
We propose a novel neural network retrieval method, which retrieves the most optimal pre-trained network for a given task.
We train this framework by meta-learning a cross-modal latent space with contrastive loss, to maximize the similarity between a dataset and a network.
We validate the efficacy of our method on ten real-world datasets, against existing NAS baselines.
arXiv Detail & Related papers (2021-03-02T06:30:51Z) - Hierarchical Neural Architecture Search for Deep Stereo Matching [131.94481111956853]
We propose the first end-to-end hierarchical NAS framework for deep stereo matching.
Our framework incorporates task-specific human knowledge into the neural architecture search framework.
It is ranked at the top 1 accuracy on KITTI stereo 2012, 2015 and Middlebury benchmarks, as well as the top 1 on SceneFlow dataset.
arXiv Detail & Related papers (2020-10-26T11:57:37Z) - MTL-NAS: Task-Agnostic Neural Architecture Search towards
General-Purpose Multi-Task Learning [71.90902837008278]
We propose to incorporate neural architecture search (NAS) into general-purpose multi-task learning (GP-MTL)
In order to adapt to different task combinations, we disentangle the GP-MTL networks into single-task backbones.
We also propose a novel single-shot gradient-based search algorithm that closes the performance gap between the searched architectures.
arXiv Detail & Related papers (2020-03-31T09:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.