論文の概要: Localized convolutional neural networks for geospatial wind forecasting
- arxiv url: http://arxiv.org/abs/2005.05930v3
- Date: Fri, 10 Jul 2020 16:13:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 18:07:55.659066
- Title: Localized convolutional neural networks for geospatial wind forecasting
- Title(参考訳): 地理空間風速予測のための局所畳み込みニューラルネットワーク
- Authors: Arnas Uselis, Mantas Luko\v{s}evi\v{c}ius, Lukas Stasytis
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は多くの空間データに関して正の特性を有する。
本研究では,CNNがグローバルな特徴に加えて,局所的な特徴を学習することのできる局所畳み込みニューラルネットワークを提案する。
どのような畳み込みレイヤにも追加可能で、簡単にエンドツーエンドのトレーニングが可能で、最小限の複雑さを導入でき、CNNは必要な範囲でそのメリットの大部分を維持できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNN) possess many positive qualities when it
comes to spatial raster data. Translation invariance enables CNNs to detect
features regardless of their position in the scene. However, in some domains,
like geospatial, not all locations are exactly equal. In this work, we propose
localized convolutional neural networks that enable convolutional architectures
to learn local features in addition to the global ones. We investigate their
instantiations in the form of learnable inputs, local weights, and a more
general form. They can be added to any convolutional layers, easily end-to-end
trained, introduce minimal additional complexity, and let CNNs retain most of
their benefits to the extent that they are needed. In this work we address
spatio-temporal prediction: test the effectiveness of our methods on a
synthetic benchmark dataset and tackle three real-world wind prediction
datasets. For one of them, we propose a method to spatially order the unordered
data. We compare the recent state-of-the-art spatio-temporal prediction models
on the same data. Models that use convolutional layers can be and are extended
with our localizations. In all these cases our extensions improve the results,
and thus often the state-of-the-art. We share all the code at a public
repository.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は空間ラスタデータに関して多くの肯定的な特性を持っている。
翻訳不変性(translation invariance)により、cnnはシーンの位置に関係なく特徴を検出できる。
しかし、地理空間のようないくつかの領域では、すべての位置が完全に等しいわけではない。
本研究では,グローバルなアーキテクチャに加えて,局所的な特徴を学習するための局所的畳み込みニューラルネットワークを提案する。
学習可能な入力,局所的な重み,より一般的な形でのインスタンス化について検討する。
どのような畳み込みレイヤにも追加可能で、簡単にエンドツーエンドのトレーニングが可能で、最小限の複雑さを導入でき、CNNは必要な範囲でそのメリットの大部分を維持できる。
本研究は, 時空間予測(spatio-temporal prediction): 合成ベンチマークデータセット上での手法の有効性を検証し, 3つの実世界の風速予測データセットに取り組む。
その1つとして,未順序データの空間的順序付け手法を提案する。
本研究では,最新の時空間予測モデルを同一データ上で比較する。
畳み込み層を使用するモデルは、ローカライゼーションによって拡張することができます。
これらすべてのケースにおいて、私たちの拡張は結果を改善します。
すべてのコードを公開リポジトリで共有しています。
関連論文リスト
- Set-based Neural Network Encoding Without Weight Tying [91.37161634310819]
本稿では,ネットワーク特性予測のためのニューラルネットワーク重み符号化手法を提案する。
我々のアプローチは、混合アーキテクチャのモデル動物園でニューラルネットワークを符号化することができる。
ニューラルネットワークのプロパティ予測には,クロスデータセットとクロスアーキテクチャという,2つの新しいタスクを導入する。
論文 参考訳(メタデータ) (2023-05-26T04:34:28Z) - Predicting COVID-19 pandemic by spatio-temporal graph neural networks: A
New Zealand's study [16.3773496061049]
我々は,ATMGNN(Attention-based Multi resolution Graph Neural Networks)という新しいディープラーニングアーキテクチャを提案する。
本手法は,空間グラフのマルチスケール構造を学習からクラスタ化アルゴリズムにより,データ駆動方式でキャプチャすることができる。
今後は、リアルタイムの予測とグローバルスケールに向けた作業の拡充を予定しています。
論文 参考訳(メタデータ) (2023-05-12T19:00:17Z) - Improved Convergence Guarantees for Shallow Neural Networks [91.3755431537592]
勾配降下法により訓練された深度2ニューラルネットの収束度を世界最小とする。
我々のモデルには、二次損失関数による回帰、完全連結フィードフォワードアーキテクチャ、RelUアクティベーション、ガウスデータインスタンス、逆ラベルといった特徴がある。
彼らは、少なくとも我々のモデルでは、収束現象がNTK体制をはるかに超越していることを強く示唆している」。
論文 参考訳(メタデータ) (2022-12-05T14:47:52Z) - Universal Approximation Property of Fully Convolutional Neural Networks
with Zero Padding [10.295288663157393]
CNNはテンソル-テンソルマッピングとして機能し、入力データの空間構造を保存する。
入力値と出力値の両方が同じ空間形状を示す場合、CNNは任意の連続関数を近似することができることを示す。
また、深い狭いCNNがテンソル-テンソル関数としてUAPを持っていることも確認した。
論文 参考訳(メタデータ) (2022-11-18T02:04:16Z) - What Can Be Learnt With Wide Convolutional Neural Networks? [69.55323565255631]
カーネルシステムにおける無限大の深層CNNについて検討する。
我々は,深部CNNが対象関数の空間スケールに適応していることを証明する。
我々は、別の深部CNNの出力に基づいて訓練された深部CNNの一般化誤差を計算して結論付ける。
論文 参考訳(メタデータ) (2022-08-01T17:19:32Z) - Focal Sparse Convolutional Networks for 3D Object Detection [121.45950754511021]
我々はスパースCNNの能力を高めるために2つの新しいモジュールを導入する。
焦点スパース・コンボリューション(Focals Conv)であり、焦点スパース・コンボリューションの多様変種である。
スパース・コンボリューションにおける空間的に学習可能な空間空間性は,高度な3次元物体検出に不可欠であることを示す。
論文 参考訳(メタデータ) (2022-04-26T17:34:10Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolutionは、非グリッド構造化データ上で動作する、新たな学習可能な演算子である。
室内および屋外シーンの点雲セグメンテーションにおける最先端技術よりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2021-01-17T18:28:23Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
本稿では,コモディティ・チップセットと標準チャネル・サウンドによるWiFi機器の屋内位置推定について検討する。
本稿では、異なるアンテナで受信されたWiFiサブキャリアに対応するチャネル状態情報から特徴を抽出する、新しい浅層ニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2020-10-16T22:48:29Z) - PushNet: Efficient and Adaptive Neural Message Passing [1.9121961872220468]
メッセージパッシングニューラルネットワークは、最近、グラフ上での表現学習に対する最先端のアプローチへと進化した。
既存のメソッドは、複数のラウンドですべてのエッジに沿って同期メッセージパッシングを実行する。
我々は、収束するまで最も関連性の高いエッジに沿ってのみ情報をプッシュする、新しい非同期メッセージパッシングアプローチについて検討する。
論文 参考訳(メタデータ) (2020-03-04T18:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。