Class-Incremental Learning for Semantic Segmentation Re-Using Neither
Old Data Nor Old Labels
- URL: http://arxiv.org/abs/2005.06050v1
- Date: Tue, 12 May 2020 21:03:29 GMT
- Title: Class-Incremental Learning for Semantic Segmentation Re-Using Neither
Old Data Nor Old Labels
- Authors: Marvin Klingner, Andreas B\"ar, Philipp Donn and Tim Fingscheidt
- Abstract summary: We present a technique implementing class-incremental learning for semantic segmentation without using the labeled data the model was initially trained on.
We show how to overcome these problems with a novel class-incremental learning technique, which nonetheless requires labels only for the new classes.
We evaluate our method on the Cityscapes dataset, where we exceed the mIoU performance of all baselines by 3.5% absolute reaching a result.
- Score: 35.586031601299034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While neural networks trained for semantic segmentation are essential for
perception in autonomous driving, most current algorithms assume a fixed number
of classes, presenting a major limitation when developing new autonomous
driving systems with the need of additional classes. In this paper we present a
technique implementing class-incremental learning for semantic segmentation
without using the labeled data the model was initially trained on. Previous
approaches still either rely on labels for both old and new classes, or fail to
properly distinguish between them. We show how to overcome these problems with
a novel class-incremental learning technique, which nonetheless requires labels
only for the new classes. Specifically, (i) we introduce a new loss function
that neither relies on old data nor on old labels, (ii) we show how new classes
can be integrated in a modular fashion into pretrained semantic segmentation
models, and finally (iii) we re-implement previous approaches in a unified
setting to compare them to ours. We evaluate our method on the Cityscapes
dataset, where we exceed the mIoU performance of all baselines by 3.5% absolute
reaching a result, which is only 2.2% absolute below the upper performance
limit of single-stage training, relying on all data and labels simultaneously.
Related papers
- Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation [56.1776710527814]
Weakly Incremental Learning for Semantic (WILSS) leverages a pre-trained segmentation model to segment new classes using cost-effective and readily available image-level labels.
A prevailing way to solve WILSS is the generation of seed areas for each new class, serving as a form of pixel-level supervision.
We propose an innovative, tendency-driven relationship of mutual exclusivity, meticulously tailored to govern the behavior of the seed areas.
arXiv Detail & Related papers (2024-04-18T08:23:24Z) - Towards Non-Exemplar Semi-Supervised Class-Incremental Learning [33.560003528712414]
Class-incremental learning aims to gradually recognize new classes while maintaining the discriminability of old ones.
We propose a non-exemplar semi-supervised CIL framework with contrastive learning and semi-supervised incremental prototype classifier (Semi-IPC)
Semi-IPC learns a prototype for each class with unsupervised regularization, enabling the model to incrementally learn from partially labeled new data.
arXiv Detail & Related papers (2024-03-27T06:28:19Z) - RaSP: Relation-aware Semantic Prior for Weakly Supervised Incremental
Segmentation [28.02204928717511]
We propose a weakly supervised approach to transfer objectness prior from the previously learned classes into the new ones.
We show how even a simple pairwise interaction between classes can significantly improve the segmentation mask quality of both old and new classes.
arXiv Detail & Related papers (2023-05-31T14:14:21Z) - Prototypical quadruplet for few-shot class incremental learning [24.814045065163135]
We propose a novel method that improves classification robustness by identifying a better embedding space using an improved contrasting loss.
Our approach retains previously acquired knowledge in the embedding space, even when trained with new classes.
We demonstrate the effectiveness of our method by showing that the embedding space remains intact after training the model with new classes and outperforms existing state-of-the-art algorithms in terms of accuracy across different sessions.
arXiv Detail & Related papers (2022-11-05T17:19:14Z) - Novel Class Discovery in Semantic Segmentation [104.30729847367104]
We introduce a new setting of Novel Class Discovery in Semantic (NCDSS)
It aims at segmenting unlabeled images containing new classes given prior knowledge from a labeled set of disjoint classes.
In NCDSS, we need to distinguish the objects and background, and to handle the existence of multiple classes within an image.
We propose the Entropy-based Uncertainty Modeling and Self-training (EUMS) framework to overcome noisy pseudo-labels.
arXiv Detail & Related papers (2021-12-03T13:31:59Z) - AutoNovel: Automatically Discovering and Learning Novel Visual
Categories [138.80332861066287]
We present a new approach called AutoNovel to tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We evaluate AutoNovel on standard classification benchmarks and substantially outperform current methods for novel category discovery.
arXiv Detail & Related papers (2021-06-29T11:12:16Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - Continual Semantic Segmentation via Repulsion-Attraction of Sparse and
Disentangled Latent Representations [18.655840060559168]
This paper focuses on class incremental continual learning in semantic segmentation.
New categories are made available over time while previous training data is not retained.
The proposed continual learning scheme shapes the latent space to reduce forgetting whilst improving the recognition of novel classes.
arXiv Detail & Related papers (2021-03-10T21:02:05Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
Class-Incremental Learning (CIL) aims to train a reliable model with the streaming data, which emerges unknown classes sequentially.
Different from traditional closed set learning, CIL has two main challenges: 1) Novel class detection.
After the novel classes are detected, the model needs to be updated without re-training using entire previous data.
arXiv Detail & Related papers (2020-08-31T04:11:24Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
arXiv Detail & Related papers (2020-02-13T18:53:32Z) - Modeling the Background for Incremental Learning in Semantic
Segmentation [39.025848280224785]
Deep architectures are vulnerable to catastrophic forgetting.
This paper addresses this problem in the context of semantic segmentation.
We propose a new distillation-based framework which explicitly accounts for this shift.
arXiv Detail & Related papers (2020-02-03T13:30:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.