論文の概要: Adaptive Double-Exploration Tradeoff for Outlier Detection
- arxiv url: http://arxiv.org/abs/2005.06092v2
- Date: Mon, 21 Mar 2022 02:23:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 10:16:40.713202
- Title: Adaptive Double-Exploration Tradeoff for Outlier Detection
- Title(参考訳): 外乱検出のための適応的二重探索トレードオフ
- Authors: Xiaojin Zhang, Honglei Zhuang, Shengyu Zhang, Yuan Zhou
- Abstract要約: 外乱検出の文脈におけるしきい値帯域問題 (TBP) の変種について検討した。
目的は、報酬がしきい値を超える外れ値を特定することである。
個別の腕を探索し、外れ値のしきい値の探索を自動的にオフにすることで、効率的なアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 31.428683644520046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a variant of the thresholding bandit problem (TBP) in the context of
outlier detection, where the objective is to identify the outliers whose
rewards are above a threshold. Distinct from the traditional TBP, the threshold
is defined as a function of the rewards of all the arms, which is motivated by
the criterion for identifying outliers. The learner needs to explore the
rewards of the arms as well as the threshold. We refer to this problem as
"double exploration for outlier detection". We construct an adaptively updated
confidence interval for the threshold, based on the estimated value of the
threshold in the previous rounds. Furthermore, by automatically trading off
exploring the individual arms and exploring the outlier threshold, we provide
an efficient algorithm in terms of the sample complexity. Experimental results
on both synthetic datasets and real-world datasets demonstrate the efficiency
of our algorithm.
- Abstract(参考訳): 異常検出の文脈におけるしきい値バンディット問題 (tbp) の変種について検討し, 報酬がしきい値を超えている外れ値を特定することを目的とした。
従来のTBPとは違い、閾値はすべての腕の報酬の関数として定義され、これは外れ値を特定するための基準によって動機付けられる。
学習者は、腕の報酬と閾値を探求する必要がある。
この問題を「異常検出のための二重探索」と呼ぶ。
我々は,前ラウンドのしきい値の推定値に基づいて,しきい値に対する適応的に更新された信頼区間を構築する。
さらに,個別の腕の探索と外れ値の探索を自動的に行うことにより,サンプルの複雑さの観点から効率的なアルゴリズムを提供する。
合成データセットと実世界のデータセットの両方における実験結果は,アルゴリズムの効率を示す。
関連論文リスト
- Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
我々は、ロバストアライメントのための新しい変分非局所ネットワークベース外乱除去フレームワークを開発した。
そこで本稿では, 投票に基づく不整合探索手法を提案し, 変換推定のための高品質な仮説的不整合をクラスタリングする。
論文 参考訳(メタデータ) (2023-04-04T03:48:56Z) - Birds of a Feather Trust Together: Knowing When to Trust a Classifier
via Adaptive Neighborhood Aggregation [30.34223543030105]
我々は、NeighborAggがアダプティブ近隣アグリゲーションを介して2つの重要な情報を利用する方法を示す。
また, 誤り検出の密接な関連課題へのアプローチを拡張し, 偽陰性境界に対する理論的カバレッジを保証する。
論文 参考訳(メタデータ) (2022-11-29T18:43:15Z) - Meta-Learning for Unsupervised Outlier Detection with Optimal Transport [4.035753155957698]
そこで本稿では,従来のデータセットからのメタラーニングに基づく異常検出の自動化手法を提案する。
特に最適なトランスポートを活用して、最も類似した分布を持つデータセットを見つけ、そのデータ分散に最も適することが証明された外れ値検出技術を適用します。
論文 参考訳(メタデータ) (2022-11-01T10:36:48Z) - Deep Clustering based Fair Outlier Detection [19.601280507914325]
本稿では,統合深層クラスタリングと外乱検出を強化するために,インスタンスレベルの重み付き表現学習戦略を提案する。
我々のDCFOD法は, 異常検出において, 異常検出の妥当性と2種類のフェアネス概念の両面において, 常に優れた性能を達成している。
論文 参考訳(メタデータ) (2021-06-09T15:12:26Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Homophily Outlier Detection in Non-IID Categorical Data [43.51919113927003]
この研究は、新しい外れ値検出フレームワークとその2つのインスタンスを導入し、カテゴリデータの外れ値を特定する。
まず、分布に敏感な外部因子とその相互依存性を値値グラフベースの表現に定義し、組み込む。
学習した値の外れ度は、直接の外れ値検出または特徴選択の除外を可能にする。
論文 参考訳(メタデータ) (2021-03-21T23:29:33Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Robust Outlier Arm Identification [16.21284542559277]
ロバスト・アウトリー・アーム識別(ROAI)の問題点について検討する。
目標は、期待される報酬が多数派から大きく逸脱した武器を特定することである。
我々は、期待される報酬の中央値と中央値の絶対偏差を用いて、外れ値のしきい値を算出する。
論文 参考訳(メタデータ) (2020-09-21T16:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。