論文の概要: Meta-Learning for Unsupervised Outlier Detection with Optimal Transport
- arxiv url: http://arxiv.org/abs/2211.00372v1
- Date: Tue, 1 Nov 2022 10:36:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 13:16:56.298895
- Title: Meta-Learning for Unsupervised Outlier Detection with Optimal Transport
- Title(参考訳): 最適輸送を用いた教師なし外乱検出のためのメタラーニング
- Authors: Prabhant Singh and Joaquin Vanschoren
- Abstract要約: そこで本稿では,従来のデータセットからのメタラーニングに基づく異常検出の自動化手法を提案する。
特に最適なトランスポートを活用して、最も類似した分布を持つデータセットを見つけ、そのデータ分散に最も適することが証明された外れ値検出技術を適用します。
- 参考スコア(独自算出の注目度): 4.035753155957698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated machine learning has been widely researched and adopted in the
field of supervised classification and regression, but progress in unsupervised
settings has been limited. We propose a novel approach to automate outlier
detection based on meta-learning from previous datasets with outliers. Our
premise is that the selection of the optimal outlier detection technique
depends on the inherent properties of the data distribution. We leverage
optimal transport in particular, to find the dataset with the most similar
underlying distribution, and then apply the outlier detection techniques that
proved to work best for that data distribution. We evaluate the robustness of
our approach and find that it outperforms the state of the art methods in
unsupervised outlier detection. This approach can also be easily generalized to
automate other unsupervised settings.
- Abstract(参考訳): 自動機械学習は、教師なし分類と回帰の分野で広く研究され、採用されてきたが、教師なし設定の進歩は限られている。
そこで本稿では,従来のデータセットからのメタラーニングに基づく異常検出の自動化手法を提案する。
我々の前提は, 最適異常検出手法の選択はデータ分布の固有特性に依存する, というものである。
特に最適なトランスポートを活用して、最も類似した分布を持つデータセットを見つけ、そのデータ分散に最も適することが証明された外れ値検出技術を適用します。
我々は,提案手法のロバスト性を評価し,教師なし異常検出において,その手法がアートメソッドの状態を上回っていることを確認した。
このアプローチは、他の教師なし設定を自動化するために簡単に一般化できる。
関連論文リスト
- Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
本稿では,事前学習対象検出器の効率的な伝達性評価について検討する。
我々は、事前訓練された検出器の大規模で多様な動物園を含む検出器転送性ベンチマークを構築した。
実験により,本手法は伝達性の評価において,他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T14:23:23Z) - Canary in a Coalmine: Better Membership Inference with Ensembled
Adversarial Queries [53.222218035435006]
私たちは、差別的で多様なクエリを最適化するために、逆ツールを使用します。
我々の改善は既存の方法よりもはるかに正確な会員推定を実現している。
論文 参考訳(メタデータ) (2022-10-19T17:46:50Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Comparison of Outlier Detection Techniques for Structured Data [2.2907341026741017]
外れ値(outlier)は、与えられたデータセットの残りのデータポイントから遠く離れた観測またはデータポイントである。
モデリングの前にトレーニングデータセットから外れ値を削除することで、より良い予測が可能になることが示されている。
この研究の目的は、データサイエンティストがその情報を使って外れ値のアルゴリズムの選択を行うために、既存の外れ値検出技術をいくつか強調し、比較することである。
論文 参考訳(メタデータ) (2021-06-16T13:40:02Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
タスク指向対話システムにおいて、スコープ外インテント検出は実用上重要である。
本稿では,テストシナリオをシミュレートして,スコープ外インテント分類器をエンドツーエンドに学習する手法を提案する。
提案手法を4つのベンチマーク・ダイアログ・データセット上で広範囲に評価し,最先端のアプローチに対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-16T08:17:18Z) - Do We Really Need to Learn Representations from In-domain Data for
Outlier Detection? [6.445605125467574]
2段階のフレームワークに基づく手法は、このタスクで最先端のパフォーマンスを達成する。
我々は,各外乱検出タスクに対して,異なる表現を訓練するコストが高いことを避ける可能性を探る。
実験では, 従来の2段階法と比較して, 様々な外乱検出ベンチマークにおいて, 競争力や性能が向上することを示した。
論文 参考訳(メタデータ) (2021-05-19T17:30:28Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - Automating Outlier Detection via Meta-Learning [37.736124230543865]
メタ学習をベースとした,Overier検出のためのモデル選択のための,最初の原則付きデータ駆動型アプローチであるMetaODを開発した。
検出モデルの選択におけるMetaODの有効性を示す。
この新しい問題をさらに研究するために、私たちはメタラーニングシステム全体、ベンチマーク環境、テストベッドデータセットをオープンソース化しました。
論文 参考訳(メタデータ) (2020-09-22T15:14:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。