論文の概要: Attribute-guided Feature Extraction and Augmentation Robust Learning for
Vehicle Re-identification
- arxiv url: http://arxiv.org/abs/2005.06184v1
- Date: Wed, 13 May 2020 07:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 13:16:50.539914
- Title: Attribute-guided Feature Extraction and Augmentation Robust Learning for
Vehicle Re-identification
- Title(参考訳): 車体再同定のための属性誘導特徴抽出と強化ロバスト学習
- Authors: Chaoran Zhuge, Yujie Peng, Yadong Li, Jiangbo Ai, Junru Chen
- Abstract要約: 本稿では,属性情報を活用するマルチガイド学習手法を提案する。
本手法はCVPR 2020 AI City Challengeにおいて66.83%の属性mAPとランク1の精度76.05%を達成する。
- 参考スコア(独自算出の注目度): 5.491463307807414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle re-identification is one of the core technologies of intelligent
transportation systems and smart cities, but large intra-class diversity and
inter-class similarity poses great challenges for existing method. In this
paper, we propose a multi-guided learning approach which utilizing the
information of attributes and meanwhile introducing two novel random augments
to improve the robustness during training. What's more, we propose an attribute
constraint method and group re-ranking strategy to refine matching results. Our
method achieves mAP of 66.83% and rank-1 accuracy 76.05% in the CVPR 2020 AI
City Challenge.
- Abstract(参考訳): 車両の再識別は、インテリジェントな交通システムとスマートシティのコア技術の一つであるが、クラス内における大きな多様性とクラス間類似性は、既存の方法にとって大きな課題となる。
本稿では,属性情報を活用したマルチガイド学習手法を提案するとともに,学習中のロバスト性を改善するために2つの新しいランダム拡張を導入する。
さらに,属性制約法とグループ再ランク戦略を提案し,マッチング結果を洗練する。
CVPR 2020 AI City Challengeでは,mAPの66.83%,ランク1の精度76.05%を達成した。
関連論文リスト
- Multi-agent Path Finding for Timed Tasks using Evolutionary Games [1.3023548510259344]
我々のアルゴリズムは,少なくとも1桁の精度で深部RL法よりも高速であることを示す。
以上の結果から,他の方法と比較してエージェント数の増加にともなってスケールが向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-15T20:10:25Z) - Multi-Objective Algorithms for Learning Open-Ended Robotic Problems [1.0124625066746598]
四足歩行は、自動運転車の普及に不可欠な複雑でオープンな問題である。
従来の強化学習アプローチは、トレーニングの不安定性とサンプルの非効率のため、しばしば不足する。
自動カリキュラム学習機構として多目的進化アルゴリズムを活用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T16:26:42Z) - Auto-selected Knowledge Adapters for Lifelong Person Re-identification [54.42307214981537]
Lifelong Person Re-Identificationは、異なる時間と場所にわたる重複しないデータセットから継続的に学習するシステムを必要とする。
リハーサルのない、あるいはリハーサルベースの既存のアプローチは、依然として破滅的な忘れ込みの問題に悩まされている。
本稿では,知識アダプタを採用した新しいフレームワークであるAdalReIDと,生涯学習のためのパラメータフリー自動選択機構を提案する。
論文 参考訳(メタデータ) (2024-05-29T11:42:02Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:54:02Z) - Pushing the Limits of Learning-based Traversability Analysis for
Autonomous Driving on CPU [1.841057463340778]
本稿では,リアルタイム機械学習に基づくトラバーサビリティ分析手法の提案と評価を行う。
新しい幾何学的特徴と視覚的特徴を統合し、重要な実装の詳細に焦点を当てることで、パフォーマンスと信頼性が著しく向上することを示します。
提案手法は、屋外運転シナリオのパブリックデータセットに関する最先端のDeep Learningアプローチと比較されている。
論文 参考訳(メタデータ) (2022-06-07T07:57:34Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
自動車再同定は、都市規模の車両分析システムにおいて重要な要素の1つである。
車両再設計のための最先端のソリューションの多くは、既存のre-idベンチマークの精度向上に重点を置いており、計算の複雑さを無視することが多い。
推論時間に1つのネットワークのみを使用する自己教師型学習によって、シンプルで効果的なハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:14:42Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
本研究では,不確かさを意識した分類器が,強化学習の難しさを解消できることを示す。
正規化最大度(NML)分布の計算法を提案する。
得られたアルゴリズムは、カウントベースの探索法と、報酬関数を学習するための先行アルゴリズムの両方に多くの興味深い関係を持つことを示す。
論文 参考訳(メタデータ) (2021-07-15T08:19:57Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Behaviorally Diverse Traffic Simulation via Reinforcement Learning [16.99423598448411]
本稿では,自律運転エージェントのための簡易なポリシー生成アルゴリズムを提案する。
提案アルゴリズムは,深層強化学習の表現能力と探索能力を活用することで,多様性と運転能力のバランスをとる。
本手法の有効性を,いくつかの挑戦的な交差点シーンにおいて実験的に示す。
論文 参考訳(メタデータ) (2020-11-11T12:49:11Z) - Cross-modality Person re-identification with Shared-Specific Feature
Transfer [112.60513494602337]
クロスモダリティの人物再識別(cm-ReID)は、インテリジェントビデオ分析において難しいが重要な技術である。
モーダリティ共有型特徴伝達アルゴリズム (cm-SSFT) を提案し, モーダリティ共有型情報とモーダリティ固有特性の両方のポテンシャルについて検討する。
論文 参考訳(メタデータ) (2020-02-28T00:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。