論文の概要: Attribute-guided Feature Extraction and Augmentation Robust Learning for
Vehicle Re-identification
- arxiv url: http://arxiv.org/abs/2005.06184v1
- Date: Wed, 13 May 2020 07:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 13:16:50.539914
- Title: Attribute-guided Feature Extraction and Augmentation Robust Learning for
Vehicle Re-identification
- Title(参考訳): 車体再同定のための属性誘導特徴抽出と強化ロバスト学習
- Authors: Chaoran Zhuge, Yujie Peng, Yadong Li, Jiangbo Ai, Junru Chen
- Abstract要約: 本稿では,属性情報を活用するマルチガイド学習手法を提案する。
本手法はCVPR 2020 AI City Challengeにおいて66.83%の属性mAPとランク1の精度76.05%を達成する。
- 参考スコア(独自算出の注目度): 5.491463307807414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle re-identification is one of the core technologies of intelligent
transportation systems and smart cities, but large intra-class diversity and
inter-class similarity poses great challenges for existing method. In this
paper, we propose a multi-guided learning approach which utilizing the
information of attributes and meanwhile introducing two novel random augments
to improve the robustness during training. What's more, we propose an attribute
constraint method and group re-ranking strategy to refine matching results. Our
method achieves mAP of 66.83% and rank-1 accuracy 76.05% in the CVPR 2020 AI
City Challenge.
- Abstract(参考訳): 車両の再識別は、インテリジェントな交通システムとスマートシティのコア技術の一つであるが、クラス内における大きな多様性とクラス間類似性は、既存の方法にとって大きな課題となる。
本稿では,属性情報を活用したマルチガイド学習手法を提案するとともに,学習中のロバスト性を改善するために2つの新しいランダム拡張を導入する。
さらに,属性制約法とグループ再ランク戦略を提案し,マッチング結果を洗練する。
CVPR 2020 AI City Challengeでは,mAPの66.83%,ランク1の精度76.05%を達成した。
関連論文リスト
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI生成コンテンツは、ネットワークエッジで協調的なMobile AIGC Service Providers(MASP)を編成して、リソース制約のあるユーザにユビキタスでカスタマイズされたコンテンツを提供することができる。
このようなパラダイムは2つの大きな課題に直面している: 1) 生のプロンプトは、ユーザーが特定のAIGCモデルで経験していないために、しばしば生成品質が低下する。
本研究では,Large Language Model (LLM) を利用してカスタマイズしたプロンプトコーパスを生成する対話型プロンプトエンジニアリング機構を開発し,政策模倣に逆強化学習(IRL)を用いる。
論文 参考訳(メタデータ) (2025-02-17T03:05:20Z) - Explainable AI-aided Feature Selection and Model Reduction for DRL-based V2X Resource Allocation [18.49800990388549]
人工知能(AI)は,第6世代(6G)ネットワークにおいて,無線リソース管理(RRM)を大幅に強化することが期待されている。
複雑なディープラーニング(DL)モデルにおける説明可能性の欠如は、実践的な実装に課題をもたらす。
本稿では,特徴選択とモデル複雑性低減のための新しいAI(XAI)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-23T10:55:38Z) - Auto-RT: Automatic Jailbreak Strategy Exploration for Red-Teaming Large Language Models [62.12822290276912]
Auto-RTは、複雑な攻撃戦略を探索し最適化する強化学習フレームワークである。
探索効率を大幅に改善し、攻撃戦略を自動的に最適化することにより、Auto-RTはボーダの脆弱性範囲を検出し、検出速度が速く、既存の方法と比較して16.63%高い成功率を達成する。
論文 参考訳(メタデータ) (2025-01-03T14:30:14Z) - Multi-agent Path Finding for Timed Tasks using Evolutionary Games [1.3023548510259344]
我々のアルゴリズムは,少なくとも1桁の精度で深部RL法よりも高速であることを示す。
以上の結果から,他の方法と比較してエージェント数の増加にともなってスケールが向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-15T20:10:25Z) - Multi-Objective Algorithms for Learning Open-Ended Robotic Problems [1.0124625066746598]
四足歩行は、自動運転車の普及に不可欠な複雑でオープンな問題である。
従来の強化学習アプローチは、トレーニングの不安定性とサンプルの非効率のため、しばしば不足する。
自動カリキュラム学習機構として多目的進化アルゴリズムを活用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T16:26:42Z) - Auto-selected Knowledge Adapters for Lifelong Person Re-identification [54.42307214981537]
Lifelong Person Re-Identificationは、異なる時間と場所にわたる重複しないデータセットから継続的に学習するシステムを必要とする。
リハーサルのない、あるいはリハーサルベースの既存のアプローチは、依然として破滅的な忘れ込みの問題に悩まされている。
本稿では,知識アダプタを採用した新しいフレームワークであるAdalReIDと,生涯学習のためのパラメータフリー自動選択機構を提案する。
論文 参考訳(メタデータ) (2024-05-29T11:42:02Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:54:02Z) - Pushing the Limits of Learning-based Traversability Analysis for
Autonomous Driving on CPU [1.841057463340778]
本稿では,リアルタイム機械学習に基づくトラバーサビリティ分析手法の提案と評価を行う。
新しい幾何学的特徴と視覚的特徴を統合し、重要な実装の詳細に焦点を当てることで、パフォーマンスと信頼性が著しく向上することを示します。
提案手法は、屋外運転シナリオのパブリックデータセットに関する最先端のDeep Learningアプローチと比較されている。
論文 参考訳(メタデータ) (2022-06-07T07:57:34Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
自動車再同定は、都市規模の車両分析システムにおいて重要な要素の1つである。
車両再設計のための最先端のソリューションの多くは、既存のre-idベンチマークの精度向上に重点を置いており、計算の複雑さを無視することが多い。
推論時間に1つのネットワークのみを使用する自己教師型学習によって、シンプルで効果的なハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:14:42Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Cross-modality Person re-identification with Shared-Specific Feature
Transfer [112.60513494602337]
クロスモダリティの人物再識別(cm-ReID)は、インテリジェントビデオ分析において難しいが重要な技術である。
モーダリティ共有型特徴伝達アルゴリズム (cm-SSFT) を提案し, モーダリティ共有型情報とモーダリティ固有特性の両方のポテンシャルについて検討する。
論文 参考訳(メタデータ) (2020-02-28T00:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。