論文の概要: Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation
- arxiv url: http://arxiv.org/abs/2310.08595v2
- Date: Mon, 16 Oct 2023 09:34:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 02:15:38.209848
- Title: Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation
- Title(参考訳): 自動車インターセクションナビゲーションのための深部強化学習
- Authors: Badr Ben Elallid, Hamza El Alaoui, and Nabil Benamar
- Abstract要約: 強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the challenges associated with navigating complex
T-intersections in dense traffic scenarios for autonomous vehicles (AVs).
Reinforcement learning algorithms have emerged as a promising approach to
address these challenges by enabling AVs to make safe and efficient decisions
in real-time. Here, we address the problem of efficiently and safely navigating
T-intersections using a lower-cost, single-agent approach based on the Twin
Delayed Deep Deterministic Policy Gradient (TD3) reinforcement learning
algorithm. We show that our TD3-based method, when trained and tested in the
CARLA simulation platform, demonstrates stable convergence and improved safety
performance in various traffic densities. Our results reveal that the proposed
approach enables the AV to effectively navigate T-intersections, outperforming
previous methods in terms of travel delays, collision minimization, and overall
cost. This study contributes to the growing body of knowledge on reinforcement
learning applications in autonomous driving and highlights the potential of
single-agent, cost-effective methods for addressing more complex driving
scenarios and advancing reinforcement learning algorithms in the future.
- Abstract(参考訳): 本稿では、自動運転車(avs)の密集した交通シナリオにおける複雑なt-intersectionsのナビゲートに関する課題について検討する。
強化学習アルゴリズムは、avsが安全かつ効率的な意思決定をリアルタイムで行えるようにすることで、これらの課題に対処する有望なアプローチとして登場した。
そこで本研究では,TD3強化学習アルゴリズムに基づく低コスト単エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
このtd3ベースの手法は,carlaシミュレーションプラットフォームでトレーニングおよびテストを行うと,様々な交通密度で安定収束し,安全性が向上することを示す。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
本研究は、自律運転における強化学習応用に関する知識の増大に寄与し、より複雑な運転シナリオに対処するための単エージェントで費用対効果の高い方法や、将来的な強化学習アルゴリズムの進歩の可能性を強調した。
関連論文リスト
- A Conflicts-free, Speed-lossless KAN-based Reinforcement Learning Decision System for Interactive Driving in Roundabouts [17.434924472015812]
本稿では,ラウンドアバウンドにおける安全かつ効率的な運転行動を促進するための学習アルゴリズムを提案する。
提案アルゴリズムは、複雑なマルチサイクルラウンドアバウトにおける安全かつ効率的な運転戦略を学習するために、深層Q-ラーニングネットワークを用いる。
その結果,本システムは安定したトレーニングプロセスを維持しつつ,安全かつ効率的な運転を実現することができた。
論文 参考訳(メタデータ) (2024-08-15T16:10:25Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
本研究は,車両CANデータのクラスタリングとセグメンテーションを同時に行うことで,一般的な運転イベントを教師なしで識別する手法である。
我々は、実際のTesla Model 3車載CANデータと、異なる運転イベントをアノテートした2時間の運転セッションのデータセットを用いて、アプローチを評価した。
論文 参考訳(メタデータ) (2023-01-12T13:10:47Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
本稿では,高密度交通シナリオにおける対話型モーションプランニングのための新しい枠組みを提案する。
我々は,他車両の協調性に関する国際的ガイダンスを提供するインタラクション対応政策であるDeep Reinforcement Learning (RL) を通じて学習することを提案する。
学習されたポリシーは、ローカル最適化ベースのプランナーを推論し、対話的な振る舞いで誘導し、他の車両が収まらない場合に安全を維持しながら、密集したトラフィックに積極的にマージする。
論文 参考訳(メタデータ) (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Model Guided Road Intersection Classification [2.9248680865344348]
本研究は,rgb画像からの区間間分類を,教師・生徒の訓練パラダイムに基づく結果向上手法とともに,統合型ニューラルネットワークを用いて検討する。
KITTIデータセットと新しいKITTI-360シーケンスの両方において、最適な入力構成を特定し、異なるネットワークパラメータを評価することを目的とした広範な実験活動により、本手法はフレーム単位の最先端手法よりも優れ、提案手法の有効性が証明された。
論文 参考訳(メタデータ) (2021-04-26T09:15:28Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
本研究では,Q-Learningとニューラル表現を組み合わせた深層強化学習を用いて不安定性を回避する。
当社の方法論では,Q-Learningを深く使用して,アジャイル方法論のローリングウェーブプランニングアプローチと組み合わせています。
実験の結果,VVNの長距離ミッションの平均性能は55.31倍に向上した。
論文 参考訳(メタデータ) (2020-03-23T12:58:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。