論文の概要: Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction
- arxiv url: http://arxiv.org/abs/2005.06312v3
- Date: Tue, 28 Jul 2020 15:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 13:08:19.617290
- Title: Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction
- Title(参考訳): 文書レベル関係抽出のための潜在構造リファインメントによる推論
- Authors: Guoshun Nan, Zhijiang Guo, Ivan Sekuli\'c, Wei Lu
- Abstract要約: 本稿では,潜在文書レベルグラフを自動的に誘導することにより,文間の関係推論を促進する新しいモデルを提案する。
具体的には、大規模文書レベルデータセット(DocRED)上でF1スコア59.05を達成する。
- 参考スコア(独自算出の注目度): 20.308845516900426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction requires integrating information within
and across multiple sentences of a document and capturing complex interactions
between inter-sentence entities. However, effective aggregation of relevant
information in the document remains a challenging research question. Existing
approaches construct static document-level graphs based on syntactic trees,
co-references or heuristics from the unstructured text to model the
dependencies. Unlike previous methods that may not be able to capture rich
non-local interactions for inference, we propose a novel model that empowers
the relational reasoning across sentences by automatically inducing the latent
document-level graph. We further develop a refinement strategy, which enables
the model to incrementally aggregate relevant information for multi-hop
reasoning. Specifically, our model achieves an F1 score of 59.05 on a
large-scale document-level dataset (DocRED), significantly improving over the
previous results, and also yields new state-of-the-art results on the CDR and
GDA dataset. Furthermore, extensive analyses show that the model is able to
discover more accurate inter-sentence relations.
- Abstract(参考訳): 文書レベルの関係抽出には、文書の複数の文内および横断的な情報の統合と、文間エンティティ間の複雑な相互作用のキャプチャが必要である。
しかし、文書中の関連情報の効果的な集約は依然として困難な研究課題である。
既存のアプローチは、非構造化テキストから構文木、共参照、ヒューリスティックに基づいて静的な文書レベルグラフを構築し、依存関係をモデル化する。
推論のためのリッチな非局所的相互作用をキャプチャできない従来の手法とは異なり、潜在文書レベルグラフを自動生成することで文間の関係推論を強化する新しいモデルを提案する。
さらに,マルチホップ推論のための関連情報を段階的に集約する改良戦略を開発した。
具体的には、大規模文書レベルデータセット(DocRED)でF1スコア59.05を達成し、以前の結果よりも大幅に改善し、CDRおよびGDAデータセットで新たな最先端結果を得る。
さらに、広範囲な分析により、モデルがより正確な文間関係を発見できることが示されている。
関連論文リスト
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA) と呼ばれる新しいモデルに依存しないフレームワークを提案する。
CEFAは機能アライメントモジュールとコンテキスト拡張モジュールで構成される。
本手法は, 稀なカテゴリにおけるHOIモデルの検出性能を向上させるために, プラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T08:42:48Z) - GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
ドキュメントレベルの関係抽出(DocRE)は、構造化されていない文書テキストからエンティティ間の関係を抽出することを目的としている。
これらの課題を克服するために,DocREの新しいモデルであるGEGAを提案する。
我々は、広く使用されている3つのベンチマークデータセット、DocRED、Re-DocRED、Revisit-DocREDでGEGAモデルを評価する。
論文 参考訳(メタデータ) (2024-07-31T07:15:33Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument extract (DEAE)は、構造化されていないドキュメントから引数とその特定の役割を特定することを目的としている。
DEAEの先進的なアプローチは、事前訓練された言語モデル(PLM)を誘導するプロンプトベースの手法を用いて、入力文書から引数を抽出する。
本稿では,この2つの問題に対処するために,グラフ拡張モデル (GAM) のセマンティック言及を提案する。
論文 参考訳(メタデータ) (2024-03-12T08:58:07Z) - Semi-automatic Data Enhancement for Document-Level Relation Extraction
with Distant Supervision from Large Language Models [26.523153535336725]
ドキュメントレベルの関係抽出(DocRE)は、長いコンテキストから関係を抽出することを目的としている。
本稿では,大規模言語モデル (LLM) と自然言語推論 (NLI) モジュールを統合する手法を提案する。
DocGNREと呼ばれる拡張データセットを導入することで,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-11-13T13:10:44Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
本研究は,対象物,文,画像全体に基づいて,テキストおよび視覚的証拠を検索することを提案する。
我々は,オブジェクトレベル,画像レベル,文レベル情報を合成し,同一性と異なるモダリティ間の推論を改善する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-05-25T15:26:13Z) - Improving Long Tailed Document-Level Relation Extraction via Easy
Relation Augmentation and Contrastive Learning [66.83982926437547]
我々は,DocREが現実のシナリオにおいて,長期分布問題の緩和に不可欠であると主張する。
長期分布問題に動機付けられ,DocREを改善するための簡易関係拡張法(ERA)を提案する。
論文 参考訳(メタデータ) (2022-05-21T06:15:11Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - Document-level Relation Extraction with Context Guided Mention
Integration and Inter-pair Reasoning [18.374097786748834]
文書レベルの関係抽出(DRE)は、2つの実体間の関係を認識することを目的としている。
これまでの研究では、言及の統合についてはほとんど研究されていないが、これは問題となるかもしれない。
本稿では,コンテキストガイドメンション統合とペア間推論という2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2022-01-13T08:00:23Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。