論文の概要: A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction
- arxiv url: http://arxiv.org/abs/2403.09721v1
- Date: Tue, 12 Mar 2024 08:58:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 21:44:54.590956
- Title: A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction
- Title(参考訳): 文書レベルイベント調停抽出のための意味的調停グラフ強化モデル
- Authors: Jian Zhang, Changlin Yang, Haiping Zhu, Qika Lin, Fangzhi Xu, Jun Liu,
- Abstract要約: Document-level Event Argument extract (DEAE)は、構造化されていないドキュメントから引数とその特定の役割を特定することを目的としている。
DEAEの先進的なアプローチは、事前訓練された言語モデル(PLM)を誘導するプロンプトベースの手法を用いて、入力文書から引数を抽出する。
本稿では,この2つの問題に対処するために,グラフ拡張モデル (GAM) のセマンティック言及を提案する。
- 参考スコア(独自算出の注目度): 12.286432133599355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document. The advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents. They mainly concentrate on establishing relations between triggers and entity mentions within documents, leaving two unresolved problems: a) independent modeling of entity mentions; b) document-prompt isolation. To this end, we propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper. Firstly, GAM constructs a semantic mention graph that captures relations within and between documents and prompts, encompassing co-existence, co-reference and co-type relations. Furthermore, we introduce an ensembled graph transformer module to address mentions and their three semantic relations effectively. Later, the graph-augmented encoder-decoder module incorporates the relation-specific graph into the input embedding of PLMs and optimizes the encoder section with topology information, enhancing the relations comprehensively. Extensive experiments on the RAMS and WikiEvents datasets demonstrate the effectiveness of our approach, surpassing baseline methods and achieving a new state-of-the-art performance.
- Abstract(参考訳): Document-level Event Argument extract (DEAE)は、構造化されていないドキュメントから引数とその特定の役割を特定することを目的としている。
DEAEの先進的なアプローチは、事前訓練された言語モデル(PLM)を誘導するプロンプトベースの手法を用いて、入力文書から引数を抽出する。
主に文書内のトリガーと実体の言及の関係を確立することに集中しており、未解決の問題が2つ残されている。
a) 実体の言及の独立したモデリング
b) 文書の発散分離
そこで本稿では,これら2つの問題に対処する意味的言及グラフ拡張モデル(GAM)を提案する。
まず、GAMは文書とプロンプト間の関係をキャプチャするセマンティック参照グラフを構築し、共存、共参照、共型関係を含む。
さらに、参照とそれらの3つの意味関係を効果的に扱うために、アンサンブルグラフトランスフォーマーモジュールを導入する。
後に、グラフ拡張エンコーダデコーダモジュールは、関係固有グラフをPLMの入力埋め込みに組み込み、エンコーダ部をトポロジ情報で最適化し、関係を包括的に拡張する。
RAMSとWikiEventsデータセットに関する大規模な実験は、私たちのアプローチの有効性を示し、ベースラインメソッドを超越し、新しい最先端のパフォーマンスを実現する。
関連論文リスト
- Relation Rectification in Diffusion Model [64.84686527988809]
本稿では,最初に生成できない関係を正確に表現するためにモデルを洗練することを目的とした,リレーション・リクティフィケーション(Relation Rectification)と呼ばれる新しいタスクを紹介する。
異種グラフ畳み込みネットワーク(HGCN)を利用した革新的な解を提案する。
軽量HGCNは、テキストエンコーダによって生成されたテキスト埋め込みを調整し、埋め込み空間におけるテキスト関係の正確な反映を保証する。
論文 参考訳(メタデータ) (2024-03-29T15:54:36Z) - Joint Entity and Relation Extraction with Span Pruning and Hypergraph
Neural Networks [58.43972540643903]
PLマーカ(最先端マーカーベースピプレリンモデル)上に構築されたEREのためのHyperGraphニューラルネットワーク(hgnn$)を提案する。
エラーの伝播を軽減するため,NERモジュールからのエンティティ識別とラベル付けの負担をモデルのジョイントモジュールに転送するために,ハイリコールプルーナー機構を用いる。
EREタスクに広く使用されている3つのベンチマークの実験は、以前の最先端のPLマーカーよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-10-26T08:36:39Z) - DocTr: Document Transformer for Structured Information Extraction in
Documents [36.1145541816468]
本稿では、視覚的にリッチな文書から構造化情報を取り出すための新しい定式化について述べる。
既存のIOBタグやグラフベースの定式化の制限に対処することを目的としている。
我々は、エンティティをアンカーワードとバウンディングボックスとして表現し、エンティティリンクをアンカーワードの関連付けとして表現する。
論文 参考訳(メタデータ) (2023-07-16T02:59:30Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - FactGraph: Evaluating Factuality in Summarization with Semantic Graph
Representations [114.94628499698096]
文書と要約を構造化された意味表現(MR)に分解するFactGraphを提案する。
MRは、コアセマンティックの概念とその関係を記述し、文書と要約の両方の主要な内容を標準形式で集約し、データの疎結合を減少させる。
事実性を評価するための異なるベンチマークの実験では、FactGraphは以前のアプローチよりも最大15%優れていた。
論文 参考訳(メタデータ) (2022-04-13T16:45:33Z) - Document-level Relation Extraction as Semantic Segmentation [38.614931876015625]
文書レベルの関係抽出は、文書から複数のエンティティペア間の関係を抽出することを目的としている。
本稿では,局所的およびグローバルな情報を取得するために,エンティティレベルの関係行列を予測することで,この問題に対処する。
文書レベルの関係抽出のための文書U字型ネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T13:44:44Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASSは、統合されたセマンティックグラフに基づく抽象的な要約を促進するためのフレームワークである。
文書表現と要約生成の両方を改善するために,グラフベースのエンコーダデコーダモデルを提案する。
実験結果から,提案アーキテクチャは長期文書および複数文書要約タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-05-25T16:20:48Z) - Document-Level Relation Extraction with Reconstruction [28.593318203728963]
文書レベルの関係抽出(DocRE)のための新しいエンコーダ分類器再構成モデルを提案する。
再構築器は、グラフ表現からの基底経路依存性を再構築し、提案されたDocREモデルがトレーニングにおけるエンティティペアと関係をエンコードすることにもっと注意を払っていることを確認する。
大規模docreデータセットにおける実験結果から,提案モデルにより,グラフベースラインにおける関係抽出精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-12-21T14:29:31Z) - Double Graph Based Reasoning for Document-level Relation Extraction [29.19714611415326]
文書レベルの関係抽出は、文書内のエンティティ間の関係を抽出することを目的としている。
二重グラフを特徴とするグラフ集約と推論ネットワーク(GAIN)を提案する。
公開データセットの実験であるDocREDは、GAINが以前の最先端技術よりも大幅なパフォーマンス改善(2.85 on F1)を達成したことを示している。
論文 参考訳(メタデータ) (2020-09-29T03:41:01Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
本稿では,潜在文書レベルグラフを自動的に誘導することにより,文間の関係推論を促進する新しいモデルを提案する。
具体的には、大規模文書レベルデータセット(DocRED)上でF1スコア59.05を達成する。
論文 参考訳(メタデータ) (2020-05-13T13:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。