論文の概要: MosMedData: Chest CT Scans With COVID-19 Related Findings Dataset
- arxiv url: http://arxiv.org/abs/2005.06465v1
- Date: Wed, 13 May 2020 13:04:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 13:42:38.569488
- Title: MosMedData: Chest CT Scans With COVID-19 Related Findings Dataset
- Title(参考訳): MosMedData: 新型コロナウイルス関連データで胸部CT検査
- Authors: S.P. Morozov, A.E. Andreychenko, N.A. Pavlov, A.V. Vladzymyrskyy, N.V.
Ledikhova, V.A. Gombolevskiy, I.A. Blokhin, P.B. Gelezhe, A.V. Gonchar, V.Yu.
Chernina
- Abstract要約: このデータセットには、ヒト肺CTスキャンとCOVID-19関連所見が含まれており、そのような所見は含まれていない。
少数の研究は、興味のある領域を描写したバイナリ・ピクセル・マスクで注釈付けされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This dataset contains anonymised human lung computed tomography (CT) scans
with COVID-19 related findings, as well as without such findings. A small
subset of studies has been annotated with binary pixel masks depicting regions
of interests (ground-glass opacifications and consolidations). CT scans were
obtained between 1st of March, 2020 and 25th of April, 2020, and provided by
municipal hospitals in Moscow, Russia. Permanent link:
https://mosmed.ai/datasets/covid19_1110. This dataset is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND
3.0) License. Key words: artificial intelligence, COVID-19, machine learning,
dataset, CT, chest, imaging
- Abstract(参考訳): このデータセットには、匿名化されたヒト肺CTスキャンとCOVID-19関連所見が含まれており、そのような所見はない。
研究の小さなサブセットは、興味のある領域(地上ガラスの透明化と統合)を描いたバイナリピクセルマスクで注釈付けされている。
また,2020年3月1日から4月25日にかけて,モスクワ市立病院でCT検査を行った。
永久リンク: https://mosmed.ai/datasets/covid19_1110。
このデータセットはCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0)ライセンスでライセンスされている。
キーワード:人工知能、covid-19、機械学習、データセット、ct、胸部、画像
関連論文リスト
- RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CTはCT-RATEに基づく大規模3次元胸部CT解釈データセットである。
私たちは、最新の強力なユニバーサルセグメンテーションと大きな言語モデルを活用して、元のデータセットを拡張します。
論文 参考訳(メタデータ) (2024-04-25T17:11:37Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - COVIDx CT-3: A Large-scale, Multinational, Open-Source Benchmark Dataset
for Computer-aided COVID-19 Screening from Chest CT Images [82.74877848011798]
胸部CT画像から新型コロナウイルスの症例を検出するための大規模ベンチマークデータセットであるCOVIDx CT-3を紹介する。
COVIDx CT-3には、少なくとも17カ国で6,068人の患者から431,205個のCTスライスが含まれている。
我々は, COVIDx CT-3データセットのデータ多様性と潜在的なバイアスについて検討し, 地理的, 集団的不均衡について検討した。
論文 参考訳(メタデータ) (2022-06-07T06:35:48Z) - HRCTCov19 -- A High-Resolution Chest CT Scan Image Dataset for COVID-19
Diagnosis and Differentiation [0.0]
新型コロナウイルスのパンデミックの間、CT(Computerd tomography)は新型コロナウイルスの患者を診断するための一般的な方法であった。
公開でアクセス可能な新型コロナウイルスのCT画像データセットは、プライバシー上の懸念から入手するのが困難である。
HRCTCov19は、新しい新型コロナウイルス高分解能胸部CTスキャン画像データセットである。
論文 参考訳(メタデータ) (2022-05-06T12:49:18Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report
Generation With Alternate Learning [70.71564065885542]
本稿では,医療用ビジュアル言語BERT(Medical-VLBERT)モデルを用いて,新型コロナウイルススキャンの異常を同定する。
このモデルは、知識事前学習と伝達の2つの手順で、代替的な学習戦略を採用する。
COVID-19患者に対する医療報告の自動作成のために,中国語で368例,胸部CTで1104例の検診を行った。
論文 参考訳(メタデータ) (2021-08-11T07:12:57Z) - COVID-VIT: Classification of COVID-19 from CT chest images based on
vision transformer models [0.8594140167290099]
この論文は、CT肺画像に基づいて、非COVIDからCOVIDを分類するMIA-COV19の課題に対応している。
主な目的は、胸部X線写真から新型コロナウイルスの診断を予測することである。
注目モデルに基づく視覚変換器(ViT)と従来の畳み込みニューラルネットワーク(CNN)に基づくDenseNetの2つのディープラーニング手法について検討した。
論文 参考訳(メタデータ) (2021-07-04T16:55:51Z) - MIA-COV19D: COVID-19 Detection through 3-D Chest CT Image Analysis [4.5497948012757865]
約5,000個の3次元CTスキャンからなる,COVID-19に注釈を付したCOV19-CT-DBデータベースについて報告する。
プライバシー上の問題から、公開可能なCOVID-19 CTデータセットの入手は非常に困難である。
また,CNN-RNNネットワークに基づく深層学習手法を提案し,その性能をCOVID19-CT-DBデータベース上で報告する。
論文 参考訳(メタデータ) (2021-06-14T15:48:14Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - COVID-19-CT-CXR: a freely accessible and weakly labeled chest X-ray and
CT image collection on COVID-19 from biomedical literature [19.00121006721942]
我々は、COVID-19関連記事から自動的に抽出されたCXRとCT画像の公開データベースであるCOVID-19-CT-CXRを提示する。
最終データベースには1,327個のCTと263個のCXRイメージが含まれており、関連するテキストがある。
論文 参考訳(メタデータ) (2020-06-11T04:00:56Z) - BIMCV COVID-19+: a large annotated dataset of RX and CT images from
COVID-19 patients [2.927469685126833]
このデータベースの最初のイテレーションには、1,380のCX、885のDX、163のCT研究が含まれている。
これは私たちの知る限りでは、オープンフォーマットで利用可能な最大のCOVID-19+画像データセットです。
論文 参考訳(メタデータ) (2020-06-01T18:06:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。