論文の概要: Cyberbullying Detection with Fairness Constraints
- arxiv url: http://arxiv.org/abs/2005.06625v2
- Date: Tue, 29 Sep 2020 21:54:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 06:44:01.329537
- Title: Cyberbullying Detection with Fairness Constraints
- Title(参考訳): 公正制約による乱流検出
- Authors: Oguzhan Gencoglu
- Abstract要約: フェアネス制約を適用でき、異なるデータセットでアプローチを検証するモデルトレーニングスキームを提案する。
我々の研究は、サイバー社会の健康に対する、偏見のない、透明で倫理的な機械学習ソリューションの追求に寄与していると信じています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyberbullying is a widespread adverse phenomenon among online social
interactions in today's digital society. While numerous computational studies
focus on enhancing the cyberbullying detection performance of machine learning
algorithms, proposed models tend to carry and reinforce unintended social
biases. In this study, we try to answer the research question of "Can we
mitigate the unintended bias of cyberbullying detection models by guiding the
model training with fairness constraints?". For this purpose, we propose a
model training scheme that can employ fairness constraints and validate our
approach with different datasets. We demonstrate that various types of
unintended biases can be successfully mitigated without impairing the model
quality. We believe our work contributes to the pursuit of unbiased,
transparent, and ethical machine learning solutions for cyber-social health.
- Abstract(参考訳): サイバーバブルは、今日のデジタル社会において、オンライン社会の相互作用において広範な有害な現象である。
多くの計算研究は、機械学習アルゴリズムのサイバーいじめ検出性能の向上に重点を置いているが、提案されたモデルは意図しない社会的バイアスを担いで強化する傾向がある。
本研究では,「公正な制約でモデルトレーニングを指導することで,サイバーいじめ検出モデルの意図しない偏見を軽減するか?」という研究課題に答えようとしている。
そこで本研究では,公平性制約を適用可能なモデルトレーニング手法を提案し,そのアプローチを異なるデータセットで検証する。
モデル品質を損なうことなく,様々な非意図バイアスを効果的に軽減できることを実証する。
我々の研究は、サイバー社会の健康に対する偏見のない、透明で倫理的な機械学習ソリューションの追求に寄与していると信じています。
関連論文リスト
- Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - The Fairness Stitch: Unveiling the Potential of Model Stitching in
Neural Network De-Biasing [0.043512163406552]
本研究では,深層学習モデルの公平性を高めるために,"The Fairness Stitch"と呼ばれる新しい手法を提案する。
我々はCelebAとUTKFaceの2つのよく知られたデータセットを総合的に評価する。
フェアネスとパフォーマンスのバランスの取れたトレードオフを達成する上で, 顕著な改善がみられた。
論文 参考訳(メタデータ) (2023-11-06T21:14:37Z) - Designing an attack-defense game: how to increase robustness of
financial transaction models via a competition [69.08339915577206]
金融セクターにおける悪意ある攻撃のエスカレートリスクを考えると、機械学習モデルの敵戦略と堅牢な防御メカニズムを理解することが重要である。
本研究の目的は、逐次的な財務データを入力として使用するニューラルネットワークモデルに対する敵攻撃と防御の現状とダイナミクスを調査することである。
我々は、現代の金融取引データにおける問題の現実的かつ詳細な調査を可能にする競争を設計した。
参加者は直接対決するので、実生活に近い環境で攻撃や防御が検討される。
論文 参考訳(メタデータ) (2023-08-22T12:53:09Z) - Session-based Cyberbullying Detection in Social Media: A Survey [16.39344929765961]
問題のさまざまなステップと課題をカプセル化したセッションベースのサイバーバブル検出フレームワークを定義します。
我々は,セッションベースのサイバーいじめデータセットを作成するための一連のベストプラクティスのエビデンスベースの基準を提案する。
論文 参考訳(メタデータ) (2022-07-14T18:56:54Z) - A Framework for Understanding Model Extraction Attack and Defense [48.421636548746704]
我々は,モデルユーティリティとユーザとのトレードオフと,敵の視点によるプライバシについて検討する。
我々は,このようなトレードオフを定量化し,その理論的特性を分析し,最適な敵攻撃・防衛戦略を理解するための最適化問題を開発する。
論文 参考訳(メタデータ) (2022-06-23T05:24:52Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Fairness-Aware Online Personalization [16.320648868892526]
個人格付けを含むオンラインパーソナライズ設定における公平性について検討する。
最初に、オンラインパーソナライゼーションが、ユーザが応答に偏っている場合、モデルが不公平に行動することを学ぶことを実証する。
次に、公正な制約の下でパーソナライズされたモデルを学習する問題を定式化し、機械学習におけるバイアスを軽減するための正規化に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-30T07:16:17Z) - Aggressive, Repetitive, Intentional, Visible, and Imbalanced: Refining
Representations for Cyberbullying Classification [4.945634077636197]
本研究では,その社会的・言語的側面を表現するために,5つの明確な要因を用いて,サイバーいじめのニュアンスな問題を考察する。
これらの結果は、サイバーいじめを社会現象として表現し、モデル化することの重要性を示している。
論文 参考訳(メタデータ) (2020-04-04T00:35:16Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
現在、我々がモデルに提示するデータセットのバイアスのため、公正な公開トレーニングが不公平なモデルにつながることは受け入れられている。
そこで本研究では,モデルのトレーニング中に公平性を同時に課すメカニズムについて検討する。
論文 参考訳(メタデータ) (2020-04-03T03:18:53Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。