論文の概要: W-Cell-Net: Multi-frame Interpolation of Cellular Microscopy Videos
- arxiv url: http://arxiv.org/abs/2005.06684v1
- Date: Thu, 14 May 2020 01:33:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 04:57:57.308837
- Title: W-Cell-Net: Multi-frame Interpolation of Cellular Microscopy Videos
- Title(参考訳): w-cell-net:セル顕微鏡ビデオのマルチフレーム補間
- Authors: Rohit Saha, Abenezer Teklemariam, Ian Hsu, Alan M. Moses
- Abstract要約: 蛍光顕微鏡タイムラプス映画の時間分解能を高めるため,近年のディープ・ビデオ・コンボリューションを応用した。
我々の知る限り、2つの連続した顕微鏡画像間のフレームを生成するために、CNN(Conal Neural Networks)を用いた以前の研究はない。
- 参考スコア(独自算出の注目度): 1.7205106391379026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks are increasingly used in video frame interpolation tasks
such as frame rate changes as well as generating fake face videos. Our project
aims to apply recent advances in Deep video interpolation to increase the
temporal resolution of fluorescent microscopy time-lapse movies. To our
knowledge, there is no previous work that uses Convolutional Neural Networks
(CNN) to generate frames between two consecutive microscopy images. We propose
a fully convolutional autoencoder network that takes as input two images and
generates upto seven intermediate images. Our architecture has two encoders
each with a skip connection to a single decoder. We evaluate the performance of
several variants of our model that differ in network architecture and loss
function. Our best model out-performs state of the art video frame
interpolation algorithms. We also show qualitative and quantitative comparisons
with state-of-the-art video frame interpolation algorithms. We believe deep
video interpolation represents a new approach to improve the time-resolution of
fluorescent microscopy.
- Abstract(参考訳): ディープニューラルネットワークは、フレームレートの変化や偽の顔ビデオの生成など、ビデオフレームの補間タスクにますます利用されている。
本研究の目的は, 蛍光顕微鏡タイムラプス映画の時間分解能を高めるため, 近年のディープビデオ補間技術の適用である。
我々の知る限り、2つの連続した顕微鏡画像間のフレームを生成するために畳み込みニューラルネットワーク(CNN)を使った以前の研究はない。
入力2つの画像から最大7つの中間画像を生成する完全畳み込みオートエンコーダネットワークを提案する。
我々のアーキテクチャは2つのエンコーダを持ち、それぞれ1つのデコーダにスキップ接続する。
我々は,ネットワークアーキテクチャと損失関数が異なるモデルのいくつかの変種の性能を評価する。
我々の最良のモデルは、アートビデオフレーム補間アルゴリズムの状態を上回ります。
また,映像フレーム補間アルゴリズムとの質的・定量的比較も行った。
深部映像補間は蛍光顕微鏡の時間分解能を改善する新しい手法であると信じている。
関連論文リスト
- ViBiDSampler: Enhancing Video Interpolation Using Bidirectional Diffusion Sampler [53.98558445900626]
現在の画像とビデオの拡散モデルは、単一のフレームからビデオを生成するのに強力だが、2フレーム条件付き生成に適応する必要がある。
我々は,これらのオフマンド問題に対処するために,広範囲な再ノイズや微調整を必要とせずに,新しい双方向サンプリング戦略を導入する。
提案手法では,それぞれ開始フレームと終了フレームに条件付き前方経路と後方経路の両方に沿って逐次サンプリングを行い,中間フレームの整合性を確保した。
論文 参考訳(メタデータ) (2024-10-08T03:01:54Z) - FusionFrames: Efficient Architectural Aspects for Text-to-Video
Generation Pipeline [4.295130967329365]
本稿では,テキスト・ツー・イメージ拡散モデルに基づく2段階の遅延拡散テキスト・ビデオ生成アーキテクチャを提案する。
本モデルの設計は,他のマスクフレーム手法と比較して計算コストを大幅に削減する。
我々は,MoVQに基づくビデオデコーディング方式の異なる構成を評価し,一貫性を改善し,PSNR,SSIM,MSE,LPIPSのスコアを向上させる。
論文 参考訳(メタデータ) (2023-11-22T00:26:15Z) - EfficientSCI: Densely Connected Network with Space-time Factorization
for Large-scale Video Snapshot Compressive Imaging [6.8372546605486555]
圧縮率の高いUHDカラービデオは,PSNRが32dB以上である単一エンドツーエンドのディープラーニングモデルを用いて,スナップショット2次元計測から再構成可能であることを示す。
提案手法は,従来のSOTAアルゴリズムよりも性能が優れ,リアルタイム性能が向上した。
論文 参考訳(メタデータ) (2023-05-17T07:28:46Z) - Latent-Shift: Latent Diffusion with Temporal Shift for Efficient
Text-to-Video Generation [115.09597127418452]
Latent-Shiftは、事前訓練されたテキスト・ツー・イメージ生成モデルに基づく効率的なテキスト・ツー・ビデオ生成手法である。
Latent-Shiftは、より効率的でありながら、同等またはより良い結果が得られることを示す。
論文 参考訳(メタデータ) (2023-04-17T17:57:06Z) - ReBotNet: Fast Real-time Video Enhancement [59.08038313427057]
ほとんどの復元ネットワークは遅く、高い計算ボトルネックがあり、リアルタイムビデオ拡張には使用できない。
本研究では,ライブビデオ通話やビデオストリームなどの実用的なユースケースをリアルタイムに拡張するための,効率的かつ高速なフレームワークを設計する。
提案手法を評価するために,実世界のビデオ通話とストリーミングのシナリオを示す2つの新しいデータセットをエミュレートし,ReBotNetがより少ない計算,メモリ要求の低減,より高速な推論時間で既存手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-03-23T17:58:05Z) - Neighbor Correspondence Matching for Flow-based Video Frame Synthesis [90.14161060260012]
フローベースフレーム合成のための近傍対応マッチング(NCM)アルゴリズムを提案する。
NCMは現在のフレームに依存しない方法で実行され、各ピクセルの時空間近傍でマルチスケールの対応を確立する。
粗いスケールのモジュールは、近隣の対応を利用して大きな動きを捉えるように設計されている。
論文 参考訳(メタデータ) (2022-07-14T09:17:00Z) - Video Frame Interpolation with Transformer [55.12620857638253]
本稿では,ビデオフレーム間の長距離画素相関をモデル化するためにTransformerを利用した新しいフレームワークを提案する。
我々のネットワークは、クロススケールウィンドウが相互に相互作用する新しいウィンドウベースのアテンション機構を備えている。
論文 参考訳(メタデータ) (2022-05-15T09:30:28Z) - FILM: Frame Interpolation for Large Motion [20.04001872133824]
本稿では,2つの入力画像から複数の中間フレームを合成するフレームアルゴリズムを提案する。
提案手法は,Xiph大運動ベンチマークの最先端手法より優れている。
論文 参考訳(メタデータ) (2022-02-10T08:48:18Z) - Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent
Neural Network [14.796204921975733]
デュアルビュースナップショット圧縮イメージング(SCI)は、2つの視野(FoV)からのビデオを1つのスナップショットでキャプチャすることを目的としている。
既存のモデルベースの復号アルゴリズムでは個々のシーンを再構築することは困難である。
本稿では,2重ビデオSCIシステムのための光フロー支援型リカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-09-11T14:24:44Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
本稿では,フレーム間の条件エントロピーをモデル化することのみに焦点を当てた,非常にシンプルで効率的なビデオ圧縮フレームワークを提案する。
まず、画像遅延符号間のエントロピーをモデル化する単純なアーキテクチャが、他のニューラルビデオ圧縮やビデオコーデックと同等の競争力を持つことを示す。
次に、このアーキテクチャの上に新しい内部学習拡張を提案し、復号速度を抑えることなく10%の節約を実現した。
論文 参考訳(メタデータ) (2020-08-20T20:01:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。