論文の概要: Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
Machine Learning
- arxiv url: http://arxiv.org/abs/2005.06852v2
- Date: Tue, 1 Sep 2020 16:47:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 04:13:06.481411
- Title: Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
Machine Learning
- Title(参考訳): 倫理的敵対者:敵対的機械学習による不公平の軽減を目指して
- Authors: Pieter Delobelle and Paul Temple and Gilles Perrouin and Beno\^it
Fr\'enay and Patrick Heymans and Bettina Berendt
- Abstract要約: 個人や組織は、モデルデザイナやデプロイ担当者が責任を持つように、不公平な結果に気付き、テストし、批判します。
トレーニングデータセットから生じる不公平な表現を緩和する上で,これらのグループを支援するフレームワークを提供する。
我々のフレームワークは公平性を改善するために2つの相互運用敵に依存している。
- 参考スコア(独自算出の注目度): 8.436127109155008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning is being integrated into a growing number of critical
systems with far-reaching impacts on society. Unexpected behaviour and unfair
decision processes are coming under increasing scrutiny due to this widespread
use and its theoretical considerations. Individuals, as well as organisations,
notice, test, and criticize unfair results to hold model designers and
deployers accountable. We offer a framework that assists these groups in
mitigating unfair representations stemming from the training datasets. Our
framework relies on two inter-operating adversaries to improve fairness. First,
a model is trained with the goal of preventing the guessing of protected
attributes' values while limiting utility losses. This first step optimizes the
model's parameters for fairness. Second, the framework leverages evasion
attacks from adversarial machine learning to generate new examples that will be
misclassified. These new examples are then used to retrain and improve the
model in the first step. These two steps are iteratively applied until a
significant improvement in fairness is obtained. We evaluated our framework on
well-studied datasets in the fairness literature -- including COMPAS -- where
it can surpass other approaches concerning demographic parity, equality of
opportunity and also the model's utility. We also illustrate our findings on
the subtle difficulties when mitigating unfairness and highlight how our
framework can assist model designers.
- Abstract(参考訳): 機械学習は、社会に大きく影響する多くの重要なシステムに統合されている。
予期せぬ行動や不公平な意思決定プロセスは、この広範な利用とその理論的考察によって、ますます精査されている。
個人や組織は、モデルデザイナやデプロイ担当者が責任を持つように不公平な結果に気付き、テストし、批判する。
トレーニングデータセットから生じる不公平な表現を緩和する上で,これらのグループを支援するフレームワークを提供する。
我々のフレームワークは公平性を改善するために2つの相互運用敵に依存している。
まず、保護された属性の値の推測を防止しつつ、ユーティリティの損失を制限することを目標としてモデルを訓練する。
この第1ステップは、公平性のためにモデルのパラメータを最適化する。
第二に、このフレームワークは敵機械学習からの回避攻撃を利用して、誤分類される新しい例を生成する。
これらの新しい例は、最初のステップでモデルの再トレーニングと改善に使用される。
これら2つのステップは、公正性が大幅に改善されるまで反復的に適用される。
我々は、CompASを含むフェアネス文学におけるよく研究されたデータセットに関するフレームワークの評価を行い、人口統計学の同等性、機会の平等性、モデルの有用性に関する他のアプローチを乗り越えることができた。
また,不公平さを緩和する上での微妙な難しさについて,その知見を述べるとともに,モデル設計を支援するフレームワークを強調する。
関連論文リスト
- From Efficiency to Equity: Measuring Fairness in Preference Learning [3.2132738637761027]
不平等とロウルシアン正義の経済理論に触発された嗜好学習モデルの公平性を評価する。
Gini Coefficient, Atkinson Index, Kuznets Ratio を用いて,これらのモデルの公平性を定量化するための指標を提案する。
論文 参考訳(メタデータ) (2024-10-24T15:25:56Z) - FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning [48.38344934125999]
提案手法は,高品質なデータ拡張を実現し,コメンデーションフェアネスを改善する方法である。
具体的には,動的グラフ対逆学習フレームワークであるFairDgclを提案する。
FairDgclは、公正さと精度の両方を持つ拡張表現を同時に生成できることを示す。
論文 参考訳(メタデータ) (2024-10-23T04:43:03Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
既存のデバイアス法、例えば、敵の訓練や、表現から保護された情報を取り除くことは、バイアスを減らすことが示されている。
2つの新たな学習目標を提案し,2つの分類課題における高い性能を維持しつつ,バイアスの低減に有効であることを示す。
論文 参考訳(メタデータ) (2022-05-05T01:57:58Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - FAIR: Fair Adversarial Instance Re-weighting [0.7829352305480285]
本研究では,公正な予測を確実にするインスタンス重み付け関数の学習に敵対的トレーニングを利用するFair Adrial Instance Re-weighting(FAIR)手法を提案する。
我々の知る限りでは、これは、個々のインスタンスの公平性に関する解釈可能な情報を提供する重み付け関数によって、再重み付けと逆方向のアプローチをマージする最初のモデルである。
論文 参考訳(メタデータ) (2020-11-15T10:48:56Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
現在、我々がモデルに提示するデータセットのバイアスのため、公正な公開トレーニングが不公平なモデルにつながることは受け入れられている。
そこで本研究では,モデルのトレーニング中に公平性を同時に課すメカニズムについて検討する。
論文 参考訳(メタデータ) (2020-04-03T03:18:53Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
本稿では,外部監査役の役割とモデル説明可能性を強調するフェアネスの新たな定義を提案する。
逆代理モデルのSHAP値から構築した正規化を用いてモデルバイアスを緩和するフレームワークを開発する。
合成データセット、UCIアダルト(国勢調査)データセット、実世界の信用評価データセットである。
論文 参考訳(メタデータ) (2020-03-11T14:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。