論文の概要: DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision
- arxiv url: http://arxiv.org/abs/2303.08403v1
- Date: Wed, 15 Mar 2023 07:13:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 14:36:53.876147
- Title: DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision
- Title(参考訳): DualFair:コントラスト的自己監督によるグループと個人レベルの公正表現学習
- Authors: Sungwon Han, Seungeon Lee, Fangzhao Wu, Sundong Kim, Chuhan Wu, Xiting
Wang, Xing Xie and Meeyoung Cha
- Abstract要約: この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
- 参考スコア(独自算出の注目度): 73.80009454050858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithmic fairness has become an important machine learning problem,
especially for mission-critical Web applications. This work presents a
self-supervised model, called DualFair, that can debias sensitive attributes
like gender and race from learned representations. Unlike existing models that
target a single type of fairness, our model jointly optimizes for two fairness
criteria - group fairness and counterfactual fairness - and hence makes fairer
predictions at both the group and individual levels. Our model uses contrastive
loss to generate embeddings that are indistinguishable for each protected
group, while forcing the embeddings of counterfactual pairs to be similar. It
then uses a self-knowledge distillation method to maintain the quality of
representation for the downstream tasks. Extensive analysis over multiple
datasets confirms the model's validity and further shows the synergy of jointly
addressing two fairness criteria, suggesting the model's potential value in
fair intelligent Web applications.
- Abstract(参考訳): アルゴリズムの公平性は、特にミッションクリティカルなWebアプリケーションにおいて、重要な機械学習問題となっている。
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
一つのフェアネスを目標とする既存のモデルとは異なり、我々のモデルは2つのフェアネス基準(グループフェアネスと対実フェアネス)を共同で最適化し、グループレベルと個人レベルでより公平な予測を行う。
私たちのモデルは対照的な損失を使って、保護されたグループごとに区別できない埋め込みを生成します。
次に、下流タスクの表現の質を維持するために自己知識蒸留法を使用する。
複数のデータセットに対する広範囲な分析はモデルの妥当性を確認し、さらに2つのフェアネス基準に共同で対処する相乗効果を示す。
関連論文リスト
- Fairness-Aware Meta-Learning via Nash Bargaining [63.44846095241147]
本稿では,機械学習におけるグループレベルの公平性の問題に対処する2段階のメタ学習フレームワークを提案する。
第1段階では、過度な競合を解決するためにNash Bargaining Solution(NBS)を使用して、モデルをステアリングする。
6つのキーフェアネスデータセットと2つの画像分類タスクにおいて、様々なフェアネス目標に対して経験的効果を示す。
論文 参考訳(メタデータ) (2024-06-11T07:34:15Z) - FairGridSearch: A Framework to Compare Fairness-Enhancing Models [0.0]
本稿では、二項分類に焦点を当て、公平性向上モデルを比較するための新しいフレームワークであるFairGridSearchを提案する。
この研究は、FairGridSearchを3つの一般的なデータセット(Adult, COMPAS, German Credit)に適用し、計量選択、基底推定器の選択、分類しきい値がモデルフェアネスに与える影響を分析する。
論文 参考訳(メタデータ) (2024-01-04T10:29:02Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Towards Threshold Invariant Fair Classification [10.317169065327546]
本稿では、決定しきい値とは無関係に、異なるグループ間で公平な性能を強制する、しきい値不変公平性の概念を紹介する。
実験結果から,提案手法は,公平性を実現するために設計された機械学習モデルの閾値感度を緩和するために有効であることが示された。
論文 参考訳(メタデータ) (2020-06-18T16:49:46Z) - Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
Machine Learning [8.436127109155008]
個人や組織は、モデルデザイナやデプロイ担当者が責任を持つように、不公平な結果に気付き、テストし、批判します。
トレーニングデータセットから生じる不公平な表現を緩和する上で,これらのグループを支援するフレームワークを提供する。
我々のフレームワークは公平性を改善するために2つの相互運用敵に依存している。
論文 参考訳(メタデータ) (2020-05-14T10:10:19Z) - FACT: A Diagnostic for Group Fairness Trade-offs [23.358566041117083]
グループフェアネス(グループフェアネス、英: Group Fairness)とは、個人の異なる集団が保護された属性によってどのように異なる扱いを受けるかを測定するフェアネスの概念のクラスである。
グループフェアネスにおけるこれらのトレードオフを体系的に評価できる一般的な診断法を提案する。
論文 参考訳(メタデータ) (2020-04-07T14:15:51Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
本稿では,外部監査役の役割とモデル説明可能性を強調するフェアネスの新たな定義を提案する。
逆代理モデルのSHAP値から構築した正規化を用いてモデルバイアスを緩和するフレームワークを開発する。
合成データセット、UCIアダルト(国勢調査)データセット、実世界の信用評価データセットである。
論文 参考訳(メタデータ) (2020-03-11T14:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。