Mitigating Gender Bias in Machine Learning Data Sets
- URL: http://arxiv.org/abs/2005.06898v2
- Date: Mon, 18 May 2020 08:04:53 GMT
- Title: Mitigating Gender Bias in Machine Learning Data Sets
- Authors: Susan Leavy, Gerardine Meaney, Karen Wade, Derek Greene
- Abstract summary: Gender bias has been identified in the context of employment advertising and recruitment tools.
This paper proposes a framework for the identification of gender bias in training data for machine learning.
- Score: 5.075506385456811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence has the capacity to amplify and perpetuate societal
biases and presents profound ethical implications for society. Gender bias has
been identified in the context of employment advertising and recruitment tools,
due to their reliance on underlying language processing and recommendation
algorithms. Attempts to address such issues have involved testing learned
associations, integrating concepts of fairness to machine learning and
performing more rigorous analysis of training data. Mitigating bias when
algorithms are trained on textual data is particularly challenging given the
complex way gender ideology is embedded in language. This paper proposes a
framework for the identification of gender bias in training data for machine
learning.The work draws upon gender theory and sociolinguistics to
systematically indicate levels of bias in textual training data and associated
neural word embedding models, thus highlighting pathways for both removing bias
from training data and critically assessing its impact.
Related papers
- The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
We compare the impact of debiasing on performance across multiple downstream tasks using a wide-range of benchmark datasets.
Experiments show that the effects of debiasing are consistently emphunderestimated across all tasks.
arXiv Detail & Related papers (2023-09-16T20:25:34Z) - Unveiling Gender Bias in Terms of Profession Across LLMs: Analyzing and
Addressing Sociological Implications [0.0]
The study examines existing research on gender bias in AI language models and identifies gaps in the current knowledge.
The findings shed light on gendered word associations, language usage, and biased narratives present in the outputs of Large Language Models.
The paper presents strategies for reducing gender bias in LLMs, including algorithmic approaches and data augmentation techniques.
arXiv Detail & Related papers (2023-07-18T11:38:45Z) - Gender Biases in Automatic Evaluation Metrics for Image Captioning [87.15170977240643]
We conduct a systematic study of gender biases in model-based evaluation metrics for image captioning tasks.
We demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations.
We present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments.
arXiv Detail & Related papers (2023-05-24T04:27:40Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Assessing Gender Bias in Predictive Algorithms using eXplainable AI [1.9798034349981162]
Predictive algorithms have a powerful potential to offer benefits in areas as varied as medicine or education.
They can inherit the bias and prejudices present in humans.
The outcomes can systematically repeat errors that create unfair results.
arXiv Detail & Related papers (2022-03-19T07:47:45Z) - Gender Bias in Text: Labeled Datasets and Lexicons [0.30458514384586394]
There is a lack of gender bias datasets and lexicons for automating the detection of gender bias.
We provide labeled datasets and exhaustive lexicons by collecting, annotating, and augmenting relevant sentences.
The released datasets and lexicons span multiple bias subtypes including: Generic He, Generic She, Explicit Marking of Sex, and Gendered Neologisms.
arXiv Detail & Related papers (2022-01-21T12:44:51Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
Large-scale pretrained language models (LMs) can be potentially dangerous in manifesting undesirable representational biases.
We propose steps towards mitigating social biases during text generation.
Our empirical results and human evaluation demonstrate effectiveness in mitigating bias while retaining crucial contextual information.
arXiv Detail & Related papers (2021-06-24T17:52:43Z) - Impact of Gender Debiased Word Embeddings in Language Modeling [0.0]
Gender, race and social biases have been detected as evident examples of unfairness in applications of Natural Language Processing.
Recent studies have shown that the human-generated data used in training is an apparent factor of getting biases.
Current algorithms have also been proven to amplify biases from data.
arXiv Detail & Related papers (2021-05-03T14:45:10Z) - Fair Representation Learning for Heterogeneous Information Networks [35.80367469624887]
We propose a comprehensive set of de-biasing methods for fair HINs representation learning.
We study the behavior of these algorithms, especially their capability in balancing the trade-off between fairness and prediction accuracy.
We evaluate the performance of the proposed methods in an automated career counseling application.
arXiv Detail & Related papers (2021-04-18T08:28:18Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.