Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms
- URL: http://arxiv.org/abs/2005.06949v4
- Date: Mon, 26 Oct 2020 01:41:37 GMT
- Title: Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms
- Authors: Bao-Jie Liu, Shi-Lei Su, and Man-Hong Yung
- Abstract summary: Nonadiabatic geometric quantum computation (NGQC) has been developed to realize fast and robust geometric gate.
We propose an unconventional scheme, called nonadiabatic noncyclic geometric quantum computation(NNGQC), that arbitrary single- and two-qubit geometric gate can be constructed via noncyclic non-Abeliangeometric phase.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonadiabatic geometric quantum computation (NGQC) has been developed to
realize fast and robust geometric gate. However, the conventional NGQC is that
all of the gates are performed with exactly the sameamount of time, whether the
geometric rotation angle is large or small, due to the limitation of cyclic
condition. Here, we propose an unconventional scheme, called nonadiabatic
noncyclic geometric quantum computation(NNGQC), that arbitrary single- and
two-qubit geometric gate can be constructed via noncyclic non-Abeliangeometric
phase. Consequently, this scheme makes it possible to accelerate the
implemented geometric gatesagainst the effects from the environmental
decoherence. Furthermore, this extensible scheme can be applied invarious
quantum platforms, such as superconducting qubit and Rydberg atoms.
Specifically, for single-qubit gate,we make simulations with practical
parameters in neutral atom system to show the robustness of NNGQC and also
compare with NGQC using the recent experimental parameters to show that the
NNGQC can significantly suppress the decoherence error. In addition, we also
demonstrate that nontrivial two-qubit geometric gate can berealized via
unconventional Rydberg blockade regime within current experimental
technologies. Therefore, ourscheme provides a promising way for fast and robust
neutral-atom-based quantum computation.
Related papers
- Geometric Quantum Machine Learning with Horizontal Quantum Gates [41.912613724593875]
We propose an alternative paradigm for the symmetry-informed construction of variational quantum circuits.
We achieve this by introducing horizontal quantum gates, which only transform the state with respect to the directions to those of the symmetry.
For a particular subclass of horizontal gates based on symmetric spaces, we can obtain efficient circuit decompositions for our gates through the KAK theorem.
arXiv Detail & Related papers (2024-06-06T18:04:39Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - State-independent geometric quantum gates via nonadiabatic and noncyclic
evolution [10.356589142632922]
We propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths.
We show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path.
These high-trivial quantum gates are promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-09-04T02:55:58Z) - Nonadiabatic Geometric Quantum Computation in Non-Hermitian Systems [2.9848983009488936]
We show how to perform nonadiabatic geometric quantum computation (NGQC) in non-Hermitian quantum systems.
By utilizing a novel geometric phase generated by non-unitary evolution of the system, a universal set of geometric gates can be realized with a high fidelity.
arXiv Detail & Related papers (2023-04-13T01:24:54Z) - Dynamical-Corrected Nonadiabatic Geometric Quantum Computation [9.941657239723108]
We present an effective geometric scheme combined with a general dynamical-corrected technique.
Our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-02-08T16:18:09Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Single-atom verification of the noise-resilient and fast characteristics
of universal nonadiabatic noncyclic geometric quantum gates [0.11242503819703256]
We experimentally implement the nonadiabatic noncyclic geometric quantum computation (NNGQC) in a single trapped ultracold $40$Ca$+$ ion.
Our results provide the first evidence confirming the possibility of accelerated quantum information processing with limited systematic errors even in the imperfect situation.
arXiv Detail & Related papers (2021-06-18T07:30:04Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Super-robust nonadiabatic geometric quantum control [0.0]
Nonadiabatic geometric quantum computation (NGQC) and nonadiabatic holonomic quantum computation (NHQC) have been proposed to reduce the run time of geometric quantum gates.
We show that NGQC and NHQC scenarios have no advantage over standard dynamical gates in most cases.
We propose a scheme of super-robust nonadiabatic geometric quantum control, in which the super-robust condition can guarantee both high speed and robustness.
arXiv Detail & Related papers (2020-08-05T14:50:56Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.