Dynamical-Corrected Nonadiabatic Geometric Quantum Computation
- URL: http://arxiv.org/abs/2302.04167v2
- Date: Tue, 11 Jul 2023 16:52:55 GMT
- Title: Dynamical-Corrected Nonadiabatic Geometric Quantum Computation
- Authors: Cheng-Yun Ding, Li Chen, Li-Hua Zhang and Zheng-Yuan Xue
- Abstract summary: We present an effective geometric scheme combined with a general dynamical-corrected technique.
Our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
- Score: 9.941657239723108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, nonadiabatic geometric quantum computation has been received great
attentions, due to its fast operation and intrinsic error resilience. However,
compared with the corresponding dynamical gates, the robustness of implemented
nonadiabatic geometric gates based on the conventional single-loop scheme still
has the same order of magnitude due to the requirement of strict multi-segment
geometric controls, and the inherent geometric fault-tolerance characteristic
is not fully explored. Here, we present an effective geometric scheme combined
with a general dynamical-corrected technique, with which the super-robust
nonadiabatic geometric quantum gates can be constructed over the conventional
single-loop and two-loop composite-pulse strategies, in terms of resisting the
systematic error, i.e., $\sigma_x$ error. In addition, combined with the
decoherence-free subspace (DFS) coding, the resulting geometric gates can also
effectively suppress the $\sigma_z$ error caused by the collective dephasing.
Notably, our protocol is a general one with simple experimental setups, which
can be potentially implemented in different quantum systems, such as Rydberg
atoms, trapped ions and superconducting qubits. These results indicate that our
scheme represents a promising way to explore large-scale fault-tolerant quantum
computation.
Related papers
- Geometric Quantum Machine Learning with Horizontal Quantum Gates [41.912613724593875]
We propose an alternative paradigm for the symmetry-informed construction of variational quantum circuits.
We achieve this by introducing horizontal quantum gates, which only transform the state with respect to the directions to those of the symmetry.
For a particular subclass of horizontal gates based on symmetric spaces, we can obtain efficient circuit decompositions for our gates through the KAK theorem.
arXiv Detail & Related papers (2024-06-06T18:04:39Z) - Comparative study of quantum error correction strategies for the
heavy-hexagonal lattice [44.99833362998488]
Topological quantum error correction is a milestone in the scaling roadmap of quantum computers.
The square-lattice surface code has become the workhorse to address this challenge.
In some platforms, however, the connectivities are kept even lower in order to minimise gate errors.
arXiv Detail & Related papers (2024-02-03T15:28:27Z) - State-independent geometric quantum gates via nonadiabatic and noncyclic
evolution [10.356589142632922]
We propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths.
We show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path.
These high-trivial quantum gates are promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-09-04T02:55:58Z) - Universal Robust Geometric Quantum Control via Geometric Trajectory
Correction [3.98625523260655]
We propose a new scheme for universal robust geometric control based on geometric trajectory correction.
Our scheme has absolute robustness advantages over conventional quantum one.
Our theoretical work is expected to offer an attractive avenue for realizing practical fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-06-06T14:49:22Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Path-optimized nonadiabatic geometric quantum computation on
superconducting qubits [3.98625523260655]
We propose a path-optimized scheme for geometric quantum computation on superconducting transmon qubits.
We find that the constructed geometric gates can be superior to their corresponding dynamical ones under different local errors.
Our scheme provides a new perspective for geometric quantum computation, making it more promising in the application of large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-12T15:26:26Z) - Nonadiabatic geometric quantum gates that are insensitive to
qubit-frequency drifts [8.750801670077806]
In the current implementation of nonadiabatic geometric phases, operational and/or random errors tend to destruct the conditions that induce geometric phases.
Here, we apply the path-design strategy to explain in detail why both configurations can realize universal quantum gates in a single-loop way.
Our scheme provides a promising way towards practical realization of high-fidelity and robust nonadiabatic geometric quantum gates.
arXiv Detail & Related papers (2021-03-16T12:05:45Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - High-fidelity and Robust Geometric Quantum Gates that Outperform
Dynamical Ones [5.781900408390438]
We propose a general framework of geometric quantum computation with the integration of the time-optimal control technique.
Our scheme provides a promising alternative way towards scalable fault-tolerant solid-state quantum computation.
arXiv Detail & Related papers (2020-01-16T13:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.