論文の概要: MineReduce: an approach based on data mining for problem size reduction
- arxiv url: http://arxiv.org/abs/2005.07415v2
- Date: Fri, 22 May 2020 16:36:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 23:28:39.886718
- Title: MineReduce: an approach based on data mining for problem size reduction
- Title(参考訳): MineReduce: 問題サイズの削減のためのデータマイニングに基づくアプローチ
- Authors: Marcelo Rodrigues de Holanda Maia (1) and Alexandre Plastino (1) and
Puca Huachi Vaz Penna (2) ((1) Universidade Federal Fluminense, (2)
Universidade Federal de Ouro Preto)
- Abstract要約: 本稿では,マイニングパターンを用いて問題サイズの削減を行うMineReduceという手法を提案する。
異種車両ルーティング問題に対するMineReduceの適用について述べる。
- 参考スコア(独自算出の注目度): 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid variations of metaheuristics that include data mining strategies have
been utilized to solve a variety of combinatorial optimization problems, with
superior and encouraging results. Previous hybrid strategies applied mined
patterns to guide the construction of initial solutions, leading to more
effective exploration of the solution space. Solving a combinatorial
optimization problem is usually a hard task because its solution space grows
exponentially with its size. Therefore, problem size reduction is also a useful
strategy in this context, especially in the case of large-scale problems. In
this paper, we build upon these ideas by presenting an approach named
MineReduce, which uses mined patterns to perform problem size reduction. We
present an application of MineReduce to improve a heuristic for the
heterogeneous fleet vehicle routing problem. The results obtained in
computational experiments show that this proposed heuristic demonstrates
superior performance compared to the original heuristic and other
state-of-the-art heuristics, achieving better solution costs with shorter run
times.
- Abstract(参考訳): データマイニング戦略を含むメタヒューリスティックのハイブリッドなバリエーションは、優れた結果と奨励的な結果を持つ様々な組合せ最適化問題を解決するために利用されてきた。
以前のハイブリッド戦略は、初期ソリューションの構築を導くためにマイニングパターンを適用し、より効果的なソリューション空間の探索に繋がった。
組合せ最適化問題を解くのは、解空間がその大きさで指数関数的に大きくなるため、通常は難しい作業である。
したがって、特に大規模問題の場合、問題サイズの削減は、この文脈において有用な戦略である。
本稿では,問題サイズの削減を行うためにマイニングパターンを使用する minereduce という手法を提案することで,これらのアイデアを導出する。
異種車両ルーティング問題に対するヒューリスティック改善のためのMineReduceの適用について述べる。
計算実験により得られた結果から,本手法は従来のヒューリスティックや最先端のヒューリスティックに比べて優れた性能を示し,より短い実行時間でより良い解法コストが得られることを示した。
関連論文リスト
- UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems [8.871356150316224]
2段階のニューラル手法は、大規模なCO問題に対処する際の効率性を示している。
本稿では,一般の大規模CO問題の解法として,統一型ニューラルディバイド・アンド・コンカー・フレームワーク(UDC)を開発する。
論文 参考訳(メタデータ) (2024-06-29T04:29:03Z) - CHARME: A chain-based reinforcement learning approach for the minor embedding problem [16.24890195949869]
本稿では,CHARME という名前の小さな埋め込み問題に対処するために,強化学習(RL)技術を利用した新しい手法を提案する。
CHARMEには、ポリシーモデリングのためのグラフニューラルネットワーク(GNN)アーキテクチャ、ソリューションの有効性を保証する状態遷移アルゴリズム、効果的なトレーニングのための順序探索戦略の3つの重要なコンポーネントが含まれている。
詳細では、CHARME は Minorminer や ATOM のような高速な埋め込み法に比べて優れた解が得られる。
論文 参考訳(メタデータ) (2024-06-11T10:12:10Z) - A Guide to Stochastic Optimisation for Large-Scale Inverse Problems [4.926711494319977]
最適化アルゴリズムは、大量のデータを持つ機械学習のデファクトスタンダードです。
我々は、逆問題の観点から、最適化における最先端の総合的な説明を提供する。
私たちは、機械学習で一般的に遭遇しない、ユニークな最適化の課題に焦点を合わせています。
論文 参考訳(メタデータ) (2024-06-10T15:02:30Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
我々は,高度メタヒューリスティックスとのギャップを著しく狭めるため,NNベースの解法を導入する。
まず,方向対応型注意モデル(DaAM)を提案する。
第2に、教師付き事前学習を伴い、堅牢な初期方針を確立するための教師付き強化学習スキームを設計する。
論文 参考訳(メタデータ) (2024-03-11T02:17:42Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
組合せ最適化(CO)問題はしばしばNPハードであり、正確なアルゴリズムには及ばない。
GFlowNetsは、複合非正規化密度を逐次サンプリングする強力な機械として登場した。
本稿では,異なる問題に対してマルコフ決定プロセス(MDP)を設計し,条件付きGFlowNetを学習して解空間からサンプルを作成することを提案する。
論文 参考訳(メタデータ) (2023-05-26T15:13:09Z) - Effective Bilevel Optimization via Minimax Reformulation [23.5093932552053]
ミニマックス問題としてバイレベル最適化の再構成を提案する。
穏やかな条件下では、これらの2つの問題が等価であることを示す。
提案手法は, 計算コストを大幅に削減しつつ, 最先端の2段階法より優れる。
論文 参考訳(メタデータ) (2023-05-22T15:41:33Z) - DIMES: A Differentiable Meta Solver for Combinatorial Optimization
Problems [41.57773395100222]
深部強化学習(DRL)モデルはNP-hard Combinatorial Optimization問題を解決する上で有望な結果を示している。
本稿では,DIMESという新しいアプローチを提案することによって,大規模最適化におけるスケーラビリティの課題に対処する。
コストのかかる自己回帰的復号法や離散解の反復的洗練に苦しむ従来のDRL法とは異なり、DIMESは候補解の基底分布をパラメータ化するためのコンパクトな連続空間を導入する。
DIMESは、トラベリングセールスマン問題や最大独立セット問題のための大規模なベンチマークデータセットにおいて、最近のDRLベースの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-08T23:24:37Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Joint Wasserstein Distribution Matching [89.86721884036021]
JDM問題(Joint Distribution matching)は、2つのドメインの関節分布を一致させるために双方向マッピングを学習することを目的としており、多くの機械学習およびコンピュータビジョンアプリケーションで発生している。
2つの領域における関節分布のワッサーシュタイン距離を最小化することにより、JDM問題に対処することを提案する。
そこで我々は,難解な問題を簡単な最適化問題に還元する重要な定理を提案し,その解法を開発した。
論文 参考訳(メタデータ) (2020-03-01T03:39:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。