MineReduce: an approach based on data mining for problem size reduction
- URL: http://arxiv.org/abs/2005.07415v2
- Date: Fri, 22 May 2020 16:36:54 GMT
- Title: MineReduce: an approach based on data mining for problem size reduction
- Authors: Marcelo Rodrigues de Holanda Maia (1) and Alexandre Plastino (1) and
Puca Huachi Vaz Penna (2) ((1) Universidade Federal Fluminense, (2)
Universidade Federal de Ouro Preto)
- Abstract summary: This paper presents an approach named MineReduce, which uses mined patterns to perform problem size reduction.
We present an application of MineReduce to improve a for the heterogeneous fleet vehicle routing problem.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid variations of metaheuristics that include data mining strategies have
been utilized to solve a variety of combinatorial optimization problems, with
superior and encouraging results. Previous hybrid strategies applied mined
patterns to guide the construction of initial solutions, leading to more
effective exploration of the solution space. Solving a combinatorial
optimization problem is usually a hard task because its solution space grows
exponentially with its size. Therefore, problem size reduction is also a useful
strategy in this context, especially in the case of large-scale problems. In
this paper, we build upon these ideas by presenting an approach named
MineReduce, which uses mined patterns to perform problem size reduction. We
present an application of MineReduce to improve a heuristic for the
heterogeneous fleet vehicle routing problem. The results obtained in
computational experiments show that this proposed heuristic demonstrates
superior performance compared to the original heuristic and other
state-of-the-art heuristics, achieving better solution costs with shorter run
times.
Related papers
- UDC: A Unified Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems [8.871356150316224]
Two-stage neural methods motivated by divide-and-conquer strategies have shown efficiency in addressing large-scale CO problems.
This article develops a unified neural divide-and-conquer framework (i.e., UDC) for solving general large-scale CO problems.
arXiv Detail & Related papers (2024-06-29T04:29:03Z) - CHARME: A chain-based reinforcement learning approach for the minor embedding problem [16.24890195949869]
We propose a novel approach utilizing Reinforcement Learning (RL) techniques to address the minor embedding problem, named CHARME.
CHARME includes three key components: a Graph Neural Network (GNN) architecture for policy modeling, a state transition algorithm ensuring solution validity, and an order exploration strategy for effective training.
In details, CHARME yields superior solutions compared to fast embedding methods such as Minorminer and ATOM.
arXiv Detail & Related papers (2024-06-11T10:12:10Z) - A Guide to Stochastic Optimisation for Large-Scale Inverse Problems [4.926711494319977]
optimisation algorithms are the de facto standard for machine learning with large amounts of data.
We provide a comprehensive account of the state-of-the-art in optimisation from the viewpoint of inverse problems.
We focus on the challenges for optimisation that are unique and are not commonly encountered in machine learning.
arXiv Detail & Related papers (2024-06-10T15:02:30Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
We introduce an NN-based solver to significantly narrow the gap with advanced metaheuristics.
First, we propose direction-aware facilitating attention model (DaAM) to incorporate directionality into the embedding process.
Second, we design a supervised reinforcement learning scheme that involves supervised pre-training to establish a robust initial policy.
arXiv Detail & Related papers (2024-03-11T02:17:42Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Effective Bilevel Optimization via Minimax Reformulation [23.5093932552053]
We propose a reformulation of bilevel optimization as a minimax problem.
Under mild conditions, we show these two problems are equivalent.
Our method outperforms state-of-the-art bilevel methods while significantly reducing the computational cost.
arXiv Detail & Related papers (2023-05-22T15:41:33Z) - DIMES: A Differentiable Meta Solver for Combinatorial Optimization
Problems [41.57773395100222]
Deep reinforcement learning (DRL) models have shown promising results in solving NP-hard Combinatorial Optimization problems.
This paper addresses the scalability challenge in large-scale optimization by proposing a novel approach, namely, DIMES.
Unlike previous DRL methods which suffer from costly autoregressive decoding or iterative refinements of discrete solutions, DIMES introduces a compact continuous space for parameterizing the underlying distribution of candidate solutions.
Extensive experiments show that DIMES outperforms recent DRL-based methods on large benchmark datasets for Traveling Salesman Problems and Maximal Independent Set problems.
arXiv Detail & Related papers (2022-10-08T23:24:37Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Joint Wasserstein Distribution Matching [89.86721884036021]
Joint distribution matching (JDM) problem, which aims to learn bidirectional mappings to match joint distributions of two domains, occurs in many machine learning and computer vision applications.
We propose to address JDM problem by minimizing the Wasserstein distance of the joint distributions in two domains.
We then propose an important theorem to reduce the intractable problem into a simple optimization problem, and develop a novel method to solve it.
arXiv Detail & Related papers (2020-03-01T03:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.