An Efficient Merge Search Matheuristic for Maximising the Net Present
Value of Project Schedules
- URL: http://arxiv.org/abs/2210.11260v1
- Date: Thu, 20 Oct 2022 13:30:23 GMT
- Title: An Efficient Merge Search Matheuristic for Maximising the Net Present
Value of Project Schedules
- Authors: Dhananjay R. Thiruvady, Su Nguyen, Christian Blum, Andreas T. Ernst
- Abstract summary: Resource constrained project scheduling is an important optimisation problem with many practical applications.
We propose a new math-heuristic algorithm based on Merge Search and parallel computing to solve the resource constrained project scheduling.
- Score: 5.10800491975164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resource constrained project scheduling is an important combinatorial
optimisation problem with many practical applications. With complex
requirements such as precedence constraints, limited resources, and
finance-based objectives, finding optimal solutions for large problem instances
is very challenging even with well-customised meta-heuristics and
matheuristics. To address this challenge, we propose a new math-heuristic
algorithm based on Merge Search and parallel computing to solve the resource
constrained project scheduling with the aim of maximising the net present
value. This paper presents a novel matheuristic framework designed for resource
constrained project scheduling, Merge search, which is a variable partitioning
and merging mechanism to formulate restricted mixed integer programs with the
aim of improving an existing pool of solutions. The solution pool is obtained
via a customised parallel ant colony optimisation algorithm, which is also
capable of generating high quality solutions on its own. The experimental
results show that the proposed method outperforms the current state-of-the-art
algorithms on known benchmark problem instances. Further analyses also
demonstrate that the proposed algorithm is substantially more efficient
compared to its counterparts in respect to its convergence properties when
considering multiple cores.
Related papers
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
Large Language Models (LLMs) have driven substantial progress in artificial intelligence.
We propose a novel framework called textbfSEquential subtextbfGoal textbfOptimization (SEGO) to enhance LLMs' ability to solve mathematical problems.
arXiv Detail & Related papers (2023-10-19T17:56:40Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
We develop a scheme with which near-term quantum computers can be applied to solve multi-objective optimization problems.
We focus on an implementation based on the quantum approximate optimization algorithm (QAOA)
arXiv Detail & Related papers (2023-08-16T09:22:01Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - SeaPearl: A Constraint Programming Solver guided by Reinforcement
Learning [0.0]
This paper presents the proof of concept for SeaPearl, a new constraint programming solver implemented in Julia.
SeaPearl supports machine learning routines in order to learn branching decisions using reinforcement learning.
Although not yet competitive with industrial solvers, SeaPearl aims to provide a flexible and open-source framework.
arXiv Detail & Related papers (2021-02-18T07:34:38Z) - Parallel Scheduling Self-attention Mechanism: Generalization and
Optimization [0.76146285961466]
We propose a general scheduling algorithm, which is derived from the optimum scheduling for small instances solved by a satisfiability checking(SAT) solver.
Strategies for further optimization on skipping redundant computations are put forward as well, with which reductions of almost 25% and 50% of the original computations are respectively achieved.
The proposed algorithms are applicable regardless of problem sizes, as long as the number of input vectors is divisible to the number of computing units available in the architecture.
arXiv Detail & Related papers (2020-12-02T12:04:16Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Constrained Combinatorial Optimization with Reinforcement Learning [0.30938904602244344]
This paper presents a framework to tackle constrained optimization problems using deep Reinforcement Learning (RL)
We extend the Neural Combinatorial Optimization (NCO) theory in order to deal with constraints in its formulation.
In that context, the solution is iteratively constructed based on interactions with the environment.
arXiv Detail & Related papers (2020-06-22T03:13:07Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.