論文の概要: Labour Market Information Driven, Personalized, OER Recommendation
System for Lifelong Learners
- arxiv url: http://arxiv.org/abs/2005.07465v1
- Date: Fri, 15 May 2020 10:48:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-20 03:25:40.317283
- Title: Labour Market Information Driven, Personalized, OER Recommendation
System for Lifelong Learners
- Title(参考訳): 生涯学習者のための労働市場情報・個人化・OER推薦システム
- Authors: Mohammadreza Tavakoli, Stefan T. Mol, and G\'abor Kismih\'ok
- Abstract要約: 我々は、生涯学習者が関連するOERベースの学習コンテンツにアクセスし、労働市場に要求されるマスタースキルにアクセスできる新しい方法を提案する。
我々のソフトウェアプロトタイプは、空白アナウンスにテキスト分類とテキストマイニングの手法を適用し、ジョブを意味のあるスキルコンポーネントに分解する。
目的,論理,学習への貢献の観点から,12名の被験者を対象に,詳細な半構造化されたインタビューを行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we suggest a novel method to aid lifelong learners to access
relevant OER based learning content to master skills demanded on the labour
market. Our software prototype 1) applies Text Classification and Text Mining
methods on vacancy announcements to decompose jobs into meaningful skills
components, which lifelong learners should target; and 2) creates a hybrid OER
Recommender System to suggest personalized learning content for learners to
progress towards their skill targets. For the first evaluation of this
prototype we focused on two job areas: Data Scientist, and Mechanical Engineer.
We applied our skill extractor approach and provided OER recommendations for
learners targeting these jobs. We conducted in-depth, semi-structured
interviews with 12 subject matter experts to learn how our prototype performs
in terms of its objectives, logic, and contribution to learning. More than 150
recommendations were generated, and 76.9% of these recommendations were treated
as useful by the interviewees. Interviews revealed that a personalized OER
recommender system, based on skills demanded by labour market, has the
potential to improve the learning experience of lifelong learners.
- Abstract(参考訳): 本稿では、生涯学習者が関連するOERベースの学習コンテンツにアクセスし、労働市場に要求されるマスタースキルにアクセスできる新しい方法を提案する。
私たちのソフトウェアプロトタイプは
1) 職種分類とテキストマイニングを空白告知に適用し、生涯学習者が対象とする有意義なスキル構成要素にジョブを分解する。
2) OERレコメンダシステムを作成し,学習者が自身のスキル目標に向かって進むための個別学習コンテンツを提案する。
このプロトタイプの最初の評価では、データサイエンティストとメカニカルエンジニアという2つの仕事領域に注目しました。
我々は,スキル抽出手法を適用し,これらの仕事をターゲットにした学習者にOERレコメンデーションを提供した。
提案するプロトタイプの目的,論理,学習への貢献という観点から,12の主題の専門家を対象に,詳細な半構造化インタビューを行った。
150以上のレコメンデーションが作成され、76.9%のレコメンデーションが面接者によって有用として扱われた。
インタビューの結果,労働市場の要求するスキルに基づいて,個人化されたOERレコメンデーションシステムは,生涯学習者の学習体験を改善する可能性があることがわかった。
関連論文リスト
- LLM-powered Multi-agent Framework for Goal-oriented Learning in Intelligent Tutoring System [54.71619734800526]
GenMentorは、ITS内で目標指向でパーソナライズされた学習を提供するために設計されたマルチエージェントフレームワークである。
学習者の目標を、カスタムのゴール・トゥ・スキルデータセットでトレーニングされた微調整LDMを使用して、必要なスキルにマッピングする。
GenMentorは、個々の学習者のニーズに合わせて探索・描画・統合機構で学習内容を調整する。
論文 参考訳(メタデータ) (2025-01-27T03:29:44Z) - KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Unlocking Futures: A Natural Language Driven Career Prediction System for Computer Science and Software Engineering Students [0.5735035463793009]
本研究は,CS学生とSWE学生の独特な特徴に基づいて,特定のキャリア提案を提供することによって,教育指導に貴重な洞察を与えるものである。
この研究は、CSとSWEの学生がスキル、興味、スキル関連の活動に合った適切な仕事を見つけるのに役立つ。
論文 参考訳(メタデータ) (2024-05-28T12:56:57Z) - Incorporating External Knowledge and Goal Guidance for LLM-based Conversational Recommender Systems [55.24980128638365]
推薦精度と言語品質に大きく貢献する外部知識と目標ガイダンスの必要性を示す。
本稿では,複雑なCRSタスクを複数のサブタスクに分解するChatCRSフレームワークを提案する。
2つのマルチゴールCRSデータセットの実験結果から、ChatCRSが新しい最先端ベンチマークを設定することが明らかになった。
論文 参考訳(メタデータ) (2024-05-03T05:42:57Z) - Course Recommender Systems Need to Consider the Job Market [16.88792726960708]
本稿では,職業市場のスキル要求を取り入れたコースレコメンデーションシステムの構築を目指して,産業界と連携して研究を行う学術研究者の視点に焦点を当てる。
本稿では,これらの要求を効果的に解決するためのコースレコメンデータシステムの基本的特性について概説する。
本稿では,言語モデル(LLM)をスキル抽出に用い,求人市場に合わせて強化学習(RL)を施した既存のリコメンデータシステムに対処する初期システムを提案する。
論文 参考訳(メタデータ) (2024-04-16T19:52:57Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
ChatGPTのような大規模言語モデルは、一般的なタスクを解く際、顕著な能力を示した。
本稿では,レコメンデーションタスクにおけるLLMの活用のための汎用フレームワークを提案し,レコメンデーションタスクとしてのLLMの機能に着目した。
提案手法は,提案手法が推薦結果に与える影響を解析し,提案手法とモデルアーキテクチャ,パラメータスケール,コンテキスト長について検討する。
論文 参考訳(メタデータ) (2024-01-10T08:28:56Z) - SkillRec: A Data-Driven Approach to Job Skill Recommendation for Career
Insights [0.3121997724420106]
SkillRecは、これらの役割を雇用する企業が公開する仕事の説明に基づいて、仕事に必要なスキルを収集し、特定する。
6,000の職種と記述のデータセットに関する予備実験に基づいて、SkillRecは精度とF1スコアの点で有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-02-20T12:07:57Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
我々は、知識強化事前学習言語モデル(KE-PLMs)の包括的なレビューを行う。
NLUでは、言語知識、テキスト知識、知識グラフ(KG)、ルール知識の4つのカテゴリに分類する。
NLGのKE-PLMは、KGベースと検索ベースに分類される。
論文 参考訳(メタデータ) (2022-11-11T04:29:02Z) - KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting [52.623349754076024]
KnowledgeCheckRに統合された推奨アプローチの概要を提供します。
その例としては,将来的に繰り返される学習内容の識別を支援するユーティリティベースのレコメンデーション,セッションベースのレコメンデーションを実装するための協調フィルタリングアプローチ,インテリジェントな質問応答を支援するコンテントベースのレコメンデーションなどがある。
論文 参考訳(メタデータ) (2021-02-15T20:06:28Z) - OER Recommendations to Support Career Development [0.0]
オープン教育資源(OER)は、世界中の幅広い学習や職業の文脈で利用できるため、問題の緩和に寄与する可能性がある。
我々は,スキル開発目標とオープンラーニングコンテンツとをマッチングする,個人化されたOERレコメンデーション手法を提案する。
1)メタデータ,OERプロパティ,コンテンツに基づくOER品質予測モデル,2)実際の労働市場情報に基づいて個別のスキルターゲットを設定する学習支援,3)学習者が自身のスキルターゲットをマスターするためのパーソナライズされたOERレコメンデータを構築する。
論文 参考訳(メタデータ) (2020-05-30T21:01:54Z) - A Recommender System For Open Educational Videos Based On Skill
Requirements [8.595270610973586]
我々は,学習者が労働市場に要求されるスキルを習得するために,学習者が関連するオープンな教育ビデオを見つけるための新しい方法を提案する。
我々は,職種別およびテキストマイニング手法を求職者発表に応用し,職種と必要なスキルを一致させるプロトタイプを構築した。
250本以上のビデオが推薦され、その82.8%がインタビュアーの役に立つものとして扱われた。
論文 参考訳(メタデータ) (2020-05-21T12:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。