論文の概要: Course Recommender Systems Need to Consider the Job Market
- arxiv url: http://arxiv.org/abs/2404.10876v2
- Date: Wed, 1 May 2024 09:48:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 17:45:32.787839
- Title: Course Recommender Systems Need to Consider the Job Market
- Title(参考訳): 求人市場を考えるためのコースレコメンダシステム
- Authors: Jibril Frej, Anna Dai, Syrielle Montariol, Antoine Bosselut, Tanja Käser,
- Abstract要約: 本稿では,職業市場のスキル要求を取り入れたコースレコメンデーションシステムの構築を目指して,産業界と連携して研究を行う学術研究者の視点に焦点を当てる。
本稿では,これらの要求を効果的に解決するためのコースレコメンデータシステムの基本的特性について概説する。
本稿では,言語モデル(LLM)をスキル抽出に用い,求人市場に合わせて強化学習(RL)を施した既存のリコメンデータシステムに対処する初期システムを提案する。
- 参考スコア(独自算出の注目度): 16.88792726960708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current course recommender systems primarily leverage learner-course interactions, course content, learner preferences, and supplementary course details like instructor, institution, ratings, and reviews, to make their recommendation. However, these systems often overlook a critical aspect: the evolving skill demand of the job market. This paper focuses on the perspective of academic researchers, working in collaboration with the industry, aiming to develop a course recommender system that incorporates job market skill demands. In light of the job market's rapid changes and the current state of research in course recommender systems, we outline essential properties for course recommender systems to address these demands effectively, including explainable, sequential, unsupervised, and aligned with the job market and user's goals. Our discussion extends to the challenges and research questions this objective entails, including unsupervised skill extraction from job listings, course descriptions, and resumes, as well as predicting recommendations that align with learner objectives and the job market and designing metrics to evaluate this alignment. Furthermore, we introduce an initial system that addresses some existing limitations of course recommender systems using large Language Models (LLMs) for skill extraction and Reinforcement Learning (RL) for alignment with the job market. We provide empirical results using open-source data to demonstrate its effectiveness.
- Abstract(参考訳): 現在のコースレコメンデータシステムは、主に学習者同士の相互作用、コースの内容、学習者の好み、インストラクター、制度、評価、レビューといった補足的なコースの詳細を活用してレコメンデーションを行う。
しかし、これらのシステムは、求人市場の進化するスキル需要という重要な側面をしばしば見落としている。
本稿では,職業市場のスキル要求を取り入れたコースレコメンデーションシステムの構築を目指して,産業界と連携して研究を行う学術研究者の視点に焦点を当てる。
求人市場の急激な変化と研究の現状を踏まえ、これらの要求を効果的に解決するためのコースレコメンデータシステムの基本的特性を概説する。
本研究は、求人情報から教師なしのスキル抽出、コース記述、履歴書、学習者目標と求人市場に対応するレコメンデーションの予測、このアライメントを評価するためのメトリクスの設計など、この目的がもたらす課題や研究課題にも及んでいる。
さらに,スキル抽出に大規模言語モデル(LLM)を,ジョブ市場に合わせて強化学習(RL)を併用した,既存のリコメンデータシステムに対処する初期システムを導入する。
オープンソースデータを用いて実験結果を提供し,その有効性を実証する。
関連論文リスト
- Explainable Multi-Stakeholder Job Recommender Systems [0.0]
新しい法律は、プライバシ、公正性、レコメンダシステムとAI全体の説明可能性といった側面に焦点を当てている。
これらのシステムは、求職者、採用者、企業によって同時に使用されるため、マルチステークホルダーアプローチが必要である。
説明可能なマルチステークホルダー求人システムに関する現在の研究を要約し、今後の研究の方向性を概説する。
論文 参考訳(メタデータ) (2024-10-01T13:12:30Z) - Emerging Synergies Between Large Language Models and Machine Learning in
Ecommerce Recommendations [19.405233437533713]
大規模言語モデル(LLM)は、言語理解と生成の基本的なタスクにおいて優れた機能を持つ。
機能エンコーダとしてLLMを用いたユーザとアイテムの表現を学習するための代表的なアプローチを提案する。
次に、協調フィルタリング強化レコメンデーションシステムのためのLLM技術の最新技術について概説した。
論文 参考訳(メタデータ) (2024-03-05T08:31:00Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
大きな言語モデル(LLM)は、印象的な汎用知性と人間のような能力を示している。
我々は,実世界のレコメンデータシステムにおけるパイプライン全体の観点から,この研究の方向性を包括的に調査する。
論文 参考訳(メタデータ) (2023-06-09T11:31:50Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - MARS-Gym: A Gym framework to model, train, and evaluate Recommender
Systems for Marketplaces [51.123916699062384]
MARS-Gymは、市場におけるレコメンデーションのための強化学習エージェントの構築と評価を行うオープンソースフレームワークである。
本稿では,Trivagoマーケットプレースデータセットにおいて,さまざまなベースラインエージェントの実装とメトリクス駆動による分析を行う。
学術研究と生産システムとのギャップを埋め、新しいアルゴリズムやアプリケーションの設計を容易にしたいと考えている。
論文 参考訳(メタデータ) (2020-09-30T16:39:31Z) - Labour Market Information Driven, Personalized, OER Recommendation
System for Lifelong Learners [0.0]
我々は、生涯学習者が関連するOERベースの学習コンテンツにアクセスし、労働市場に要求されるマスタースキルにアクセスできる新しい方法を提案する。
我々のソフトウェアプロトタイプは、空白アナウンスにテキスト分類とテキストマイニングの手法を適用し、ジョブを意味のあるスキルコンポーネントに分解する。
目的,論理,学習への貢献の観点から,12名の被験者を対象に,詳細な半構造化されたインタビューを行った。
論文 参考訳(メタデータ) (2020-05-15T10:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。