論文の概要: On Learnability under General Stochastic Processes
- arxiv url: http://arxiv.org/abs/2005.07605v3
- Date: Fri, 11 Mar 2022 14:57:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 22:33:17.564475
- Title: On Learnability under General Stochastic Processes
- Title(参考訳): 一般確率過程における学習性について
- Authors: A. Philip Dawid and Ambuj Tewari
- Abstract要約: 一般の非イド過程における統計的学習は、未熟である。
一般プロセスの下で関数クラスの学習可能性に関する2つの自然な概念を提供する。
我々の結果は二項分類と回帰の両方に当てはまる。
- 参考スコア(独自算出の注目度): 20.22409095000365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical learning theory under independent and identically distributed
(iid) sampling and online learning theory for worst case individual sequences
are two of the best developed branches of learning theory. Statistical learning
under general non-iid stochastic processes is less mature. We provide two
natural notions of learnability of a function class under a general stochastic
process. We show that both notions are in fact equivalent to online
learnability. Our results hold for both binary classification and regression.
- Abstract(参考訳): 独立分布型(iid)サンプリングとオンライン学習理論に基づく統計的学習理論は、学習理論の最も発達した分野の2つである。
一般の非iid確率過程下での統計的学習は成熟度が低い。
一般確率過程の下で関数クラスの学習可能性に関する2つの自然な概念を提供する。
両方の概念が実際にオンライン学習能力と等価であることを示す。
我々の結果は二項分類と回帰の両方に当てはまる。
関連論文リスト
- Collaborative Learning with Different Labeling Functions [7.228285747845779]
我々は、$n$のデータ分布ごとに正確な分類器を学習することを目的とした、協調型PAC学習の亜種について研究する。
データ分布がより弱い実現可能性の仮定を満たす場合、サンプル効率の学習は依然として可能であることを示す。
論文 参考訳(メタデータ) (2024-02-16T04:32:22Z) - Beyond Expectations: Learning with Stochastic Dominance Made Practical [88.06211893690964]
支配は、不確実な結果で意思決定を行うためのリスク-逆の選好をモデル化する。
理論上は魅力的だが、機械学習における優位性の応用は乏しい。
まず支配の概念を一般化し、任意の確率変数の任意のペア間の比較を可能にする。
次に、優位性の観点から最適解を見つけるための単純で効率的なアプローチを開発する。
論文 参考訳(メタデータ) (2024-02-05T03:21:23Z) - Supervised learning with probabilistic morphisms and kernel mean
embeddings [0.0]
本稿では,教師あり学習における2つのアプローチを統一した教師あり学習モデルを提案する。
統計的学習理論において無視されてきた2つの測定可能性問題に対処する。
不正な問題を解くために,Vapnik-Stefanuykの正規化手法の変種を提案する。
論文 参考訳(メタデータ) (2023-05-10T17:54:21Z) - Learning versus Refutation in Noninteractive Local Differential Privacy [133.80204506727526]
非対話的局所差分プライバシー(LDP)における2つの基本的な統計課題について検討する。
本研究の主な成果は,非対話型LDPプロトコルにおけるPAC学習の複雑さの完全な評価である。
論文 参考訳(メタデータ) (2022-10-26T03:19:24Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
本稿では,D-BAT(Diversity-By-dis-Agreement Training)を提案する。
我々は、D-BATが一般化された相違の概念から自然に現れることを示す。
論文 参考訳(メタデータ) (2022-02-09T12:03:02Z) - Realizable Learning is All You Need [21.34668631009594]
実現可能かつ不可知的な学習可能性の同値性は、学習理論における基本的な現象である。
実現可能かつ不可知な学習可能性の同値性を説明する最初のモデルに依存しないフレームワークを提示する。
論文 参考訳(メタデータ) (2021-11-08T19:00:00Z) - From Undecidability of Non-Triviality and Finiteness to Undecidability
of Learnability [0.0]
新たに提案したモデルが実際にデータから学べるかどうかを厳格に評価するための汎用的な手順は存在しないことを示す。
PACバイナリ分類、一様および普遍的なオンライン学習、教師と教師の相互作用による正確な学習では、学習性は一般に決定不可能である。
機械学習モデルが成功するかどうかを決定するのに、すべてに適したアルゴリズムは存在しない。
論文 参考訳(メタデータ) (2021-06-02T18:00:04Z) - Evading the Simplicity Bias: Training a Diverse Set of Models Discovers
Solutions with Superior OOD Generalization [93.8373619657239]
SGDで訓練されたニューラルネットワークは最近、線形予測的特徴に優先的に依存することが示された。
この単純さバイアスは、分布外堅牢性(OOD)の欠如を説明することができる。
単純さのバイアスを軽減し,ood一般化を改善できることを実証する。
論文 参考訳(メタデータ) (2021-05-12T12:12:24Z) - Don't Just Blame Over-parametrization for Over-confidence: Theoretical
Analysis of Calibration in Binary Classification [58.03725169462616]
理論上は、過剰パラメトリゼーションは過剰信頼の唯一の理由ではない。
我々は、ロジスティック回帰は本質的に信頼過剰であり、実現可能で、非パラメータな設定であることを示す。
おそらく驚くことに、過剰な信頼が常にそうであるとは限らないことも示します。
論文 参考訳(メタデータ) (2021-02-15T21:38:09Z) - A Theory of Universal Learning [26.51949485387526]
普遍的な学習の確率は3つしかないことを示す。
任意の概念クラスの学習曲線は指数的あるいは任意に遅い速度で減衰することを示す。
論文 参考訳(メタデータ) (2020-11-09T15:10:32Z) - On Computation and Generalization of Generative Adversarial Imitation
Learning [134.17122587138897]
GAIL(Generative Adversarial Learning)は、シーケンシャルな意思決定ポリシーを学習するための強力で実践的なアプローチである。
本稿ではGAILの理論的性質について考察する。
論文 参考訳(メタデータ) (2020-01-09T00:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。