Guided interactive image segmentation using machine learning and color
based data set clustering
- URL: http://arxiv.org/abs/2005.07662v5
- Date: Tue, 21 Jun 2022 14:51:59 GMT
- Title: Guided interactive image segmentation using machine learning and color
based data set clustering
- Authors: Adrian Friebel, Tim Johann, Dirk Drasdo, Stefan Hoehme
- Abstract summary: We present a novel approach that combines machine learning based interactive image segmentation using supervoxels with a clustering method for the automated identification of similarly colored images in large data sets.
Our approach solves the problem of significant color variability prevalent and often unavoidable in biological and medical images.
- Score: 0.16683739531034203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach that combines machine learning based interactive
image segmentation using supervoxels with a clustering method for the automated
identification of similarly colored images in large data sets which enables a
guided reuse of classifiers. Our approach solves the problem of significant
color variability prevalent and often unavoidable in biological and medical
images which typically leads to deteriorated segmentation and quantification
accuracy thereby greatly reducing the necessary training effort. This increase
in efficiency facilitates the quantification of much larger numbers of images
thereby enabling interactive image analysis for recent new technological
advances in high-throughput imaging. The presented methods are applicable for
almost any image type and represent a useful tool for image analysis tasks in
general.
Related papers
- Systematic review of image segmentation using complex networks [1.3053649021965603]
This review presents various image segmentation methods using complex networks.
In computer vision and image processing applications, image segmentation is essential for analyzing complex images.
arXiv Detail & Related papers (2024-01-05T11:14:07Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Multi-scale Sparse Representation-Based Shadow Inpainting for Retinal
OCT Images [0.261990490798442]
Inpainting shadowed regions cast by superficial blood vessels in retinal optical coherence tomography ( OCT) images is critical for accurate and robust machine analysis and clinical diagnosis.
Traditional sequence-based approaches such as propagating neighboring information to gradually fill in the missing regions are cost-effective.
Deep learning-based methods such as encoder-decoder networks have shown promising results in natural image inpainting tasks.
We propose a novel multi-scale shadow inpainting framework for OCT images by synergically applying sparse representation and deep learning.
arXiv Detail & Related papers (2022-02-23T09:37:14Z) - A multi-stage GAN for multi-organ chest X-ray image generation and
segmentation [2.7561479348365734]
We present a novel multi-stage generation algorithm based on Generative Adrial Networks (GANs)
Unlike other approaches, generation occurs in several stages, which simplifies the procedure and allows it to be used on very small datasets.
The multistage approach achieves state-of-the-artversa and, when very few images are used to train the GANs, outperforms the corresponding single-stage approach.
arXiv Detail & Related papers (2021-06-09T15:15:19Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
Photoacoustic imaging has the potential to revolutionise healthcare.
Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information.
We present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images.
arXiv Detail & Related papers (2021-05-20T09:33:55Z) - Deep Multilabel CNN for Forensic Footwear Impression Descriptor
Identification [0.9786690381850356]
We employ a deep learning approach to classify footwear impression's features known as emphdescriptors for forensic use cases.
We develop and evaluate a technique for feeding downsampled greyscale impressions to a neural network pre-trained on data from a different domain.
arXiv Detail & Related papers (2021-02-09T19:39:28Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.