MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training
- URL: http://arxiv.org/abs/2501.07556v1
- Date: Mon, 13 Jan 2025 18:37:36 GMT
- Title: MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training
- Authors: Xingyi He, Hao Yu, Sida Peng, Dongli Tan, Zehong Shen, Hujun Bao, Xiaowei Zhou,
- Abstract summary: Deep learning-based image matching algorithms have dramatically outperformed humans in rapidly and accurately finding large amounts of correspondences.
We propose a large-scale pre-training framework that utilizes synthetic cross-modal training signals to train models to recognize and match fundamental structures across images.
Our key finding is that the matching model trained with our framework achieves remarkable generalizability across more than eight unseen cross-modality registration tasks.
- Score: 62.843316348659165
- License:
- Abstract: Image matching, which aims to identify corresponding pixel locations between images, is crucial in a wide range of scientific disciplines, aiding in image registration, fusion, and analysis. In recent years, deep learning-based image matching algorithms have dramatically outperformed humans in rapidly and accurately finding large amounts of correspondences. However, when dealing with images captured under different imaging modalities that result in significant appearance changes, the performance of these algorithms often deteriorates due to the scarcity of annotated cross-modal training data. This limitation hinders applications in various fields that rely on multiple image modalities to obtain complementary information. To address this challenge, we propose a large-scale pre-training framework that utilizes synthetic cross-modal training signals, incorporating diverse data from various sources, to train models to recognize and match fundamental structures across images. This capability is transferable to real-world, unseen cross-modality image matching tasks. Our key finding is that the matching model trained with our framework achieves remarkable generalizability across more than eight unseen cross-modality registration tasks using the same network weight, substantially outperforming existing methods, whether designed for generalization or tailored for specific tasks. This advancement significantly enhances the applicability of image matching technologies across various scientific disciplines and paves the way for new applications in multi-modality human and artificial intelligence analysis and beyond.
Related papers
- Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
We introduce a Multimodal Alignment and Reconstruction Network (MARNet) to enhance the model's resistance to visual noise.
MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains.
Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model.
arXiv Detail & Related papers (2024-07-26T16:30:18Z) - Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
The main challenge in cross-modality ReID lies in effectively dealing with visual differences between different modalities.
Existing attack methods have primarily focused on the characteristics of the visible image modality.
This study proposes a universal perturbation attack specifically designed for cross-modality ReID.
arXiv Detail & Related papers (2024-01-18T15:56:23Z) - A Simple and Robust Framework for Cross-Modality Medical Image
Segmentation applied to Vision Transformers [0.0]
We propose a simple framework to achieve fair image segmentation of multiple modalities using a single conditional model.
We show that our framework outperforms other cross-modality segmentation methods on the Multi-Modality Whole Heart Conditional Challenge.
arXiv Detail & Related papers (2023-10-09T09:51:44Z) - Cones 2: Customizable Image Synthesis with Multiple Subjects [50.54010141032032]
We study how to efficiently represent a particular subject as well as how to appropriately compose different subjects.
By rectifying the activations in the cross-attention map, the layout appoints and separates the location of different subjects in the image.
arXiv Detail & Related papers (2023-05-30T18:00:06Z) - Multi-modal unsupervised brain image registration using edge maps [7.49320945341034]
We propose a simple yet effective unsupervised deep learning-based em multi-modal image registration approach.
The intuition behind this is that image locations with a strong gradient are assumed to denote a transition of tissues.
We evaluate our approach in the context of registering multi-modal (T1w to T2w) magnetic resonance (MR) brain images of different subjects using three different loss functions.
arXiv Detail & Related papers (2022-02-09T15:50:14Z) - TransFuse: A Unified Transformer-based Image Fusion Framework using
Self-supervised Learning [5.849513679510834]
Image fusion is a technique to integrate information from multiple source images with complementary information to improve the richness of a single image.
Two-stage methods avoid the need of large amount of task-specific training data by training encoder-decoder network on large natural image datasets.
We propose a destruction-reconstruction based self-supervised training scheme to encourage the network to learn task-specific features.
arXiv Detail & Related papers (2022-01-19T07:30:44Z) - Cross-modal Image Retrieval with Deep Mutual Information Maximization [14.778158582349137]
We study the cross-modal image retrieval, where the inputs contain a source image plus some text that describes certain modifications to this image and the desired image.
Our method narrows the modality gap between the text modality and the image modality by maximizing mutual information between their not exactly semantically identical representation.
arXiv Detail & Related papers (2021-03-10T13:08:09Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Multimodal Categorization of Crisis Events in Social Media [81.07061295887172]
We present a new multimodal fusion method that leverages both images and texts as input.
In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities.
We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.
arXiv Detail & Related papers (2020-04-10T06:31:30Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.