論文の概要: DeepSoCS: A Neural Scheduler for Heterogeneous System-on-Chip (SoC)
Resource Scheduling
- arxiv url: http://arxiv.org/abs/2005.07666v2
- Date: Fri, 5 Jun 2020 09:53:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 22:35:01.696293
- Title: DeepSoCS: A Neural Scheduler for Heterogeneous System-on-Chip (SoC)
Resource Scheduling
- Title(参考訳): DeepSoCS: 異種システムオンチップ(SoC)リソーススケジューリングのためのニューラルネットワークスケジューリング
- Authors: Tegg Taekyong Sung, Jeongsoo Ha, Jeewoo Kim, Alex Yahja, Chae-Bong
Sohn, Bo Ryu
- Abstract要約: システム・オン・チップ(SoC)システムのための新しいスケジューリングソリューションを提案する。
我々のDeep Reinforcement Learning (DRL)ベースのスケジューリング(DeepSoCS)はルールベースのスケジューラの脆さを克服する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we~present a novel scheduling solution for a class of
System-on-Chip (SoC) systems where heterogeneous chip resources (DSP, FPGA,
GPU, etc.) must be efficiently scheduled for continuously arriving hierarchical
jobs with their tasks represented by a directed acyclic graph. Traditionally,
heuristic algorithms have been widely used for many resource scheduling
domains, and Heterogeneous Earliest Finish Time (HEFT) has been a dominating
state-of-the-art technique across a broad range of heterogeneous resource
scheduling domains over many years. Despite their long-standing popularity,
HEFT-like algorithms are known to be vulnerable to a small amount of noise
added to the environment. Our Deep Reinforcement Learning (DRL)-based SoC
Scheduler (DeepSoCS), capable of learning the "best" task ordering under
dynamic environment changes, overcomes the brittleness of rule-based schedulers
such as HEFT with significantly higher performance across different types of
jobs. We~describe a DeepSoCS design process using a real-time heterogeneous SoC
scheduling emulator, discuss major challenges, and present two novel neural
network design features that lead to outperforming HEFT: (i) hierarchical job-
and task-graph embedding; and (ii) efficient use of real-time task information
in the state space. Furthermore, we~introduce effective techniques to address
two fundamental challenges present in our environment: delayed consequences and
joint actions. Through an extensive simulation study, we~show that our DeepSoCS
exhibits the significantly higher performance of job execution time than that
of HEFT with a higher level of robustness under realistic noise conditions.
We~conclude with a discussion of the potential improvements for our DeepSoCS
neural scheduler.
- Abstract(参考訳): 本稿では,不均一なチップ資源(DSP,FPGA,GPUなど)を,有向非巡回グラフで表されたタスクで連続的に階層的なジョブを到着させるような,システムオンチップ(SoC)システムの新しいスケジューリングソリューションを提案する。
伝統的に、ヒューリスティックなアルゴリズムは多くのリソーススケジューリングドメインで広く使われており、ヘテロジニアス最初期のフィニッシュタイム(heft)は、長年にわたって幅広い異種リソーススケジューリングドメインにおいて最先端の技術である。
その長年の人気にもかかわらず、HEFTのようなアルゴリズムは環境に少量のノイズが加えられることに弱いことが知られている。
我々のDeep Reinforcement Learning(DRL)ベースのSoC Scheduler(DeepSoCS)は、動的環境変化下での"ベスト"なタスク注文を学習し、HEFTのようなルールベースのスケジューラの脆さを克服し、ジョブの種類によってパフォーマンスが著しく向上する。
私たちは、リアルタイムのヘテロジニアスsocスケジューリングエミュレータを用いたdeepsocs設計プロセスを記述し、主要な課題について議論し、heftを上回る2つの新しいニューラルネットワーク設計機能を紹介します。
(i)階層的なジョブとタスクグラフの埋め込み
(ii)状態空間におけるリアルタイムタスク情報の効率的な利用。
さらに, 環境における2つの根本的な課題, 遅延帰結と共同行動に対処するための効果的な手法を提示する。
DeepSoCSは,広範にわたるシミュレーション研究を通じて,現実的な騒音条件下では高いロバスト性を有するHEFTよりもはるかに高いジョブ実行時間性能を示すことを示す。
我々はDeepSoCSニューラルスケジューラの潜在的な改善について議論する。
関連論文リスト
- Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments [8.315191578007857]
そこで本研究では,Q-ラーニングに基づく新しいコンピュータシステムの性能最適化と適応型ワークロード管理スケジューリングアルゴリズムを提案する。
対照的に、強化学習アルゴリズムであるQラーニングは、システムの状態変化から継続的に学習し、動的スケジューリングとリソース最適化を可能にする。
この研究は、将来の大規模システムにおけるAI駆動適応スケジューリングの統合の基礎を提供し、システムのパフォーマンスを高め、運用コストを削減し、持続可能なエネルギー消費をサポートするスケーラブルでインテリジェントなソリューションを提供する。
論文 参考訳(メタデータ) (2024-11-08T05:58:09Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
我々は,協調型MEC支援RANスライシングシステムにおける異種サービス要求に対するSSRの最大化を目指す。
最適ハイブリッドRAポリシーをインテリジェントに学習するためのRGRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-02T01:36:13Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
我々は任意の解法によって生成されるPOMDP実行から高品質なトレースを学習する。
我々は、データと時間効率のIndu Logic Programming(ILP)を利用して、解釈可能な信念に基づくポリシー仕様を生成する。
ASP(Answer Set Programming)で表現された学習は、ニューラルネットワークよりも優れた性能を示し、より少ない計算時間で最適な手作りタスクに類似していることを示す。
論文 参考訳(メタデータ) (2024-02-29T15:36:01Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Scheduling Inference Workloads on Distributed Edge Clusters with
Reinforcement Learning [11.007816552466952]
本稿では,エッジネットワークにおける予測クエリを短時間でスケジューリングする問題に焦点をあてる。
シミュレーションにより,大規模ISPの現実的なネットワーク設定とワークロードにおけるいくつかのポリシーを解析する。
我々は、強化学習に基づくスケジューリングアルゴリズムASETを設計し、システム条件に応じてその決定を適応させることができる。
論文 参考訳(メタデータ) (2023-01-31T13:23:34Z) - Deep Reinforcement Learning for System-on-Chip: Myths and Realities [0.0]
本稿では,SoC(System-on-Chip)リソース割り当て領域におけるニューラルスケジューラの実現可能性について検討する。
我々の新しいニューラルスケジューラ技術であるEclectic Interaction Matching (EIM)は、上記の課題を克服する。
論文 参考訳(メタデータ) (2022-07-29T10:26:38Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - Smart Scheduling based on Deep Reinforcement Learning for Cellular
Networks [18.04856086228028]
深部強化学習(DRL)に基づくスマートスケジューリング手法を提案する。
実装フレンドリーな設計、すなわちエージェントのためのスケーラブルなニューラルネットワーク設計と仮想環境トレーニングフレームワークを提供する。
本研究では, DRLベースのスマートスケジューリングが従来のスケジューリング方式を上回り, 実用システムにも適用できることを示した。
論文 参考訳(メタデータ) (2021-03-22T02:09:16Z) - Learning to Schedule DAG Tasks [7.577417675452624]
有向非周期グラフ(DAG)のスケジューリングに関する新しい学習手法を提案する。
このアルゴリズムは強化学習エージェントを用いて、DAGに向けられたエッジを反復的に追加する。
我々の手法は既存のスケジューリングアルゴリズムにも容易に適用できる。
論文 参考訳(メタデータ) (2021-03-05T01:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。