論文の概要: Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments
- arxiv url: http://arxiv.org/abs/2411.05346v1
- Date: Fri, 08 Nov 2024 05:58:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:53:40.188233
- Title: Reinforcement Learning for Adaptive Resource Scheduling in Complex System Environments
- Title(参考訳): 複雑なシステム環境における適応的資源スケジューリングのための強化学習
- Authors: Pochun Li, Yuyang Xiao, Jinghua Yan, Xuan Li, Xiaoye Wang,
- Abstract要約: そこで本研究では,Q-ラーニングに基づく新しいコンピュータシステムの性能最適化と適応型ワークロード管理スケジューリングアルゴリズムを提案する。
対照的に、強化学習アルゴリズムであるQラーニングは、システムの状態変化から継続的に学習し、動的スケジューリングとリソース最適化を可能にする。
この研究は、将来の大規模システムにおけるAI駆動適応スケジューリングの統合の基礎を提供し、システムのパフォーマンスを高め、運用コストを削減し、持続可能なエネルギー消費をサポートするスケーラブルでインテリジェントなソリューションを提供する。
- 参考スコア(独自算出の注目度): 8.315191578007857
- License:
- Abstract: This study presents a novel computer system performance optimization and adaptive workload management scheduling algorithm based on Q-learning. In modern computing environments, characterized by increasing data volumes, task complexity, and dynamic workloads, traditional static scheduling methods such as Round-Robin and Priority Scheduling fail to meet the demands of efficient resource allocation and real-time adaptability. By contrast, Q-learning, a reinforcement learning algorithm, continuously learns from system state changes, enabling dynamic scheduling and resource optimization. Through extensive experiments, the superiority of the proposed approach is demonstrated in both task completion time and resource utilization, outperforming traditional and dynamic resource allocation (DRA) algorithms. These findings are critical as they highlight the potential of intelligent scheduling algorithms based on reinforcement learning to address the growing complexity and unpredictability of computing environments. This research provides a foundation for the integration of AI-driven adaptive scheduling in future large-scale systems, offering a scalable, intelligent solution to enhance system performance, reduce operating costs, and support sustainable energy consumption. The broad applicability of this approach makes it a promising candidate for next-generation computing frameworks, such as edge computing, cloud computing, and the Internet of Things.
- Abstract(参考訳): そこで本研究では,Q-ラーニングに基づく新しいコンピュータシステムの性能最適化と適応型ワークロード管理スケジューリングアルゴリズムを提案する。
データボリューム、タスクの複雑さ、動的ワークロードの増加を特徴とする現代のコンピューティング環境では、ラウンドロビンや優先順位スケジューリングといった従来の静的スケジューリング手法は、効率的なリソース割り当てとリアルタイム適応性の要求を満たすことができない。
対照的に、強化学習アルゴリズムであるQラーニングは、システムの状態変化から継続的に学習し、動的スケジューリングとリソース最適化を可能にする。
広範囲な実験を通じて,提案手法の優位性はタスク完了時間と資源利用の両面で実証され,従来の資源割り当て(DRA)アルゴリズムよりも優れていた。
これらの発見は、コンピュータ環境の複雑さと予測不可能性に対処するため、強化学習に基づくインテリジェントなスケジューリングアルゴリズムの可能性を強調している。
この研究は、将来の大規模システムにおけるAI駆動適応スケジューリングの統合の基礎を提供し、システムのパフォーマンスを高め、運用コストを削減し、持続可能なエネルギー消費をサポートするスケーラブルでインテリジェントなソリューションを提供する。
このアプローチの幅広い適用性は、エッジコンピューティング、クラウドコンピューティング、モノのインターネットなど、次世代コンピューティングフレームワークに有望な候補となる。
関連論文リスト
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
本研究では,長期エネルギー制約下でのデータ到着や資源の可利用性に固有のランダム性に対処する動的スケジューリングと資源割当アルゴリズムを開発した。
提案アルゴリズムは, デバイススケジューリング, 計算容量調整, 帯域幅の割り当ておよび各ラウンドの送信電力を適応的に決定する。
本手法の有効性をシミュレーションにより検証し,ベースライン方式と比較して学習性能とエネルギー効率が向上したことを示す。
論文 参考訳(メタデータ) (2024-05-20T14:13:22Z) - Enhancing Kubernetes Automated Scheduling with Deep Learning and Reinforcement Techniques for Large-Scale Cloud Computing Optimization [2.546966753840083]
本稿では,ディープラーニングと強化学習に基づくタスク自動スケジューリング手法を提案する。
提案手法の有効性と性能について実験により検証した。
論文 参考訳(メタデータ) (2024-02-26T13:12:44Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - A Review of Deep Reinforcement Learning in Serverless Computing:
Function Scheduling and Resource Auto-Scaling [2.0722667822370386]
本稿では、サーバーレスコンピューティングにおけるDeep Reinforcement Learning(DRL)技術の適用について、包括的なレビューを行う。
DRLをサーバレスコンピューティングに適用する最近の研究の体系的なレビューが、さまざまなアルゴリズム、モデル、パフォーマンスについて紹介されている。
分析の結果,DRLは環境から学習・適応する能力を有しており,機能スケジューリングと資源スケーリングの効率化に期待できる結果が得られた。
論文 参考訳(メタデータ) (2023-10-05T09:26:04Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Fast Context Adaptation in Cost-Aware Continual Learning [10.515324071327903]
5GとBeyondネットワークは、より複雑な学習エージェントを必要とし、学習プロセス自体が、コミュニケーションや計算リソースのためにユーザと競合することになるかもしれない。
一方、学習プロセスは、効率的な戦略に迅速に収束するためのリソースを必要とし、一方、学習プロセスは、ユーザのデータプレーンから可能な限り少ないリソースを取らずに、ユーザのリソースを損なわないように、効率的でなければならない。
本稿では,データプレーンに割り当てられたリソースと学習用に確保されたリソースのバランスをとるための動的戦略を提案する。
論文 参考訳(メタデータ) (2023-06-06T17:46:48Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
本稿では,現実的なスケジューリング問題を解決するための強化学習手法を提案する。
高性能コンピューティングコミュニティにおいて一般的に実行されるアルゴリズムであるColesky Factorizationに適用する。
我々のアルゴリズムは,アクター・クリティカル・アルゴリズム (A2C) と組み合わせてグラフニューラルネットワークを用いて,問題の適応表現をオンザフライで構築する。
論文 参考訳(メタデータ) (2020-11-09T10:57:21Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
無線ネットワークにおいて,共同作業,スペクトル,送信電力配分問題について検討する。
提案アルゴリズムは、標準Q-ラーニングアルゴリズムと比較して、収束に必要なイテレーション数と全ユーザの最大遅延を最大18%、11.1%削減することができる。
論文 参考訳(メタデータ) (2020-07-20T13:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。