論文の概要: Recent Advances in SQL Query Generation: A Survey
- arxiv url: http://arxiv.org/abs/2005.07667v1
- Date: Fri, 15 May 2020 17:31:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 22:15:22.596621
- Title: Recent Advances in SQL Query Generation: A Survey
- Title(参考訳): sqlクエリ生成の最近の進歩:調査
- Authors: Jovan Kalajdjieski, Martina Toshevska, Frosina Stojanovska
- Abstract要約: ディープラーニング技術の発展に伴い、リレーショナルデータベースに適した自然言語インタフェースの設計において、広範な研究が進められている。
畳み込みニューラルネットワークやリカレントニューラルネットワーク,ポインタネットワーク,強化学習など,さまざまなアーキテクチャのモデルを記述する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language is hypothetically the best user interface for many domains.
However, general models that provide an interface between natural language and
any other domain still do not exist. Providing natural language interface to
relational databases could possibly attract a vast majority of users that are
or are not proficient with query languages. With the rise of deep learning
techniques, there is extensive ongoing research in designing a suitable natural
language interface to relational databases.
This survey aims to overview some of the latest methods and models proposed
in the area of SQL query generation from natural language. We describe models
with various architectures such as convolutional neural networks, recurrent
neural networks, pointer networks, reinforcement learning, etc. Several
datasets intended to address the problem of SQL query generation are
interpreted and briefly overviewed. In the end, evaluation metrics utilized in
the field are presented mainly as a combination of execution accuracy and
logical form accuracy.
- Abstract(参考訳): 自然言語は多くのドメインにとって最高のユーザーインターフェースである。
しかし、自然言語と他のドメインとのインターフェイスを提供する一般的なモデルはまだ存在しない。
リレーショナルデータベースへの自然言語インターフェースの提供は、クエリ言語に精通している、あるいは熟していないユーザの大部分を惹きつける可能性がある。
ディープラーニング技術の普及に伴い、リレーショナルデータベースに適した自然言語インターフェースの設計に関する広範な研究が進行中である。
この調査は、自然言語からsqlクエリ生成の領域で提案されている最新の方法とモデルを概観することを目的としている。
本稿では,畳み込みニューラルネットワーク,リカレントニューラルネットワーク,ポインタネットワーク,強化学習など,さまざまなアーキテクチャを持つモデルについて述べる。
SQLクエリ生成の問題を解決するために、いくつかのデータセットが解釈され、簡単に概説される。
最後に、フィールドで利用される評価指標を、主に実行精度と論理形式精度の組み合わせとして提示する。
関連論文リスト
- Text2SQL is Not Enough: Unifying AI and Databases with TAG [47.45480855418987]
Table-Augmented Generation (TAG) は、データベース上の自然言語の質問に答えるパラダイムである。
我々は、TAG問題を研究するためのベンチマークを開発し、標準手法がクエリの20%以上を正しく答えることを発見した。
論文 参考訳(メタデータ) (2024-08-27T00:50:14Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Natural Language Interfaces for Tabular Data Querying and Visualization: A Survey [30.836162812277085]
大規模言語モデル(LLM)の台頭はこの分野をさらに進歩させ、自然言語処理技術のための新たな道を開いた。
本稿では,これらのインターフェースの基礎となる基本概念と技術を紹介し,セマンティック解析に特に重点を置いている。
この中には、LSMの影響を深く掘り下げ、その強み、制限、将来の改善の可能性を強調している。
論文 参考訳(メタデータ) (2023-10-27T05:01:20Z) - xDBTagger: Explainable Natural Language Interface to Databases Using
Keyword Mappings and Schema Graph [0.17188280334580192]
自然言語クエリをインターフェース内の構造化クエリ言語(NLQ)にリレーショナルデータベースに変換することは、難しい作業である。
我々は xDBTagger を提案する。xDBTagger は説明可能なハイブリッド翻訳パイプラインで,ユーザがテキストと視覚の両方で行う決定について説明する。
xDBTaggerは精度の点で有効であり、クエリを最先端のパイプラインベースシステムと比較して最大10000倍の効率で変換する。
論文 参考訳(メタデータ) (2022-10-07T18:17:09Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - Deep Learning Driven Natural Languages Text to SQL Query Conversion: A
Survey [2.309914459672557]
本稿では,近年研究されている24のニューラルネットワークモデルについて概観する。
TEXT2技術のモデルのトレーニングに広く使用されている11のデータセットの概要も紹介する。
論文 参考訳(メタデータ) (2022-08-08T20:54:34Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - "What Do You Mean by That?" A Parser-Independent Interactive Approach
for Enhancing Text-to-SQL [49.85635994436742]
ループ内に人間を包含し,複数質問を用いてユーザと対話する,新規非依存型対話型アプローチ(PIIA)を提案する。
PIIAは、シミュレーションと人的評価の両方を用いて、限られたインタラクションターンでテキストとドメインのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-11-09T02:14:33Z) - Data Agnostic RoBERTa-based Natural Language to SQL Query Generation [0.0]
NL2タスクは、自然言語による質問から有効なクエリへの変換問題を解決するために、ディープラーニングアプローチを見つけることを目的としている。
データプライバシに関するアプローチを,その中核として紹介しています。
成果は得られていないが、モデルのトレーニングからテーブルの必要性を排除した。
論文 参考訳(メタデータ) (2020-10-11T13:18:46Z) - Towards a Natural Language Query Processing System [0.0]
本稿では,自然言語クエリインタフェースとバックエンド関係データベースの設計と開発について報告する。
この研究の斬新さは、自然言語クエリを構造化クエリ言語に変換するために必要なメタデータを格納するために、グラフデータベースを中間層として定義することにある。
サンプルクエリの翻訳結果は90%の精度で得られた。
論文 参考訳(メタデータ) (2020-09-25T19:52:20Z) - Photon: A Robust Cross-Domain Text-to-SQL System [189.1405317853752]
私たちは、マッピングを即座に決定できない自然言語入力にフラグを付けることができる、堅牢でモジュール化されたクロスドメインなNLIDBPhotonを紹介します。
提案手法は,翻訳不能なユーザ入力に対して,テキストからネイティブシステムへのロバストさを効果的に向上させる。
論文 参考訳(メタデータ) (2020-07-30T07:44:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。