MRNet: a Multi-scale Residual Network for EEG-based Sleep Staging
- URL: http://arxiv.org/abs/2101.02538v1
- Date: Thu, 7 Jan 2021 13:48:30 GMT
- Title: MRNet: a Multi-scale Residual Network for EEG-based Sleep Staging
- Authors: Xue Jiang
- Abstract summary: We propose a new framework, called MRNet, for data-driven sleep staging by integrating a multi-scale feature fusion model and a sequential correction algorithm.
EEG signals lose considerable detailed information in network propagation, which affects the representation of deep features.
Experiment results demonstrate the competitive performance of our proposed approach on both accuracy and F1 score.
- Score: 5.141687309207561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sleep staging based on electroencephalogram (EEG) plays an important role in
the clinical diagnosis and treatment of sleep disorders. In order to emancipate
human experts from heavy labeling work, deep neural networks have been employed
to formulate automated sleep staging systems recently. However, EEG signals
lose considerable detailed information in network propagation, which affects
the representation of deep features. To address this problem, we propose a new
framework, called MRNet, for data-driven sleep staging by integrating a
multi-scale feature fusion model and a Markov-based sequential correction
algorithm. The backbone of MRNet is a residual block-based network, which
performs as a feature extractor.Then the fusion model constructs a feature
pyramid by concatenating the outputs from the different depths of the backbone,
which can help the network better comprehend the signals in different scales.
The Markov-based sequential correction algorithm is designed to reduce the
output jitters generated by the classifier. The algorithm depends on a prior
stage distribution associated with the sleep stage transition rule and the
Markov chain. Experiment results demonstrate the competitive performance of our
proposed approach on both accuracy and F1 score (e.g., 85.14% Acc and 78.91% F1
score on Sleep-EDFx, and 87.59% Acc and 79.62% F1 score on Sleep-EDF).
Related papers
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - MPCNN: A Novel Matrix Profile Approach for CNN-based Sleep Apnea
Classification [0.0]
Sleep apnea (SA) is a significant respiratory condition that poses a major global health challenge.
Previous studies have investigated several machine and deep learning models for electrocardiogram (ECG)-based SA diagnoses.
We propose an innovative approach to address this diagnostic gap by delving deeper into the comprehensive segments of the ECG signal.
arXiv Detail & Related papers (2023-11-25T14:39:12Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN)
The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance.
It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase.
arXiv Detail & Related papers (2022-02-06T22:18:42Z) - Sleep Staging Based on Serialized Dual Attention Network [0.0]
We propose a deep learning model SDAN based on raw EEG.
It serially combines the channel attention and spatial attention mechanisms to filter and highlight key information.
It achieves excellent results in the N1 sleep stage compared to other methods.
arXiv Detail & Related papers (2021-07-18T13:18:12Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
We develop a multi-scale deep residual network for the ECG signal classification task.
We are the first to propose to treat the multi-lead signal as a 2-dimensional matrix.
Our proposed model achieves 99.2% F1-score in the MIT-BIH dataset and 89.4% F1-score in Alibaba dataset.
arXiv Detail & Related papers (2020-12-10T08:37:44Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
We propose a conditioning trick, called difference departure from normality, applied on the generator network in response to instability issues during GAN training.
We force the generator to get closer to the departure from normality function of real samples computed in the spectral domain of Schur decomposition.
arXiv Detail & Related papers (2020-10-12T16:50:22Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.