Multi-level Feature Fusion-based CNN for Local Climate Zone
Classification from Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42
Dataset
- URL: http://arxiv.org/abs/2005.07983v1
- Date: Sat, 16 May 2020 13:16:47 GMT
- Title: Multi-level Feature Fusion-based CNN for Local Climate Zone
Classification from Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42
Dataset
- Authors: Chunping Qiu and Xiaochong Tong and Michael Schmitt and Benjamin
Bechtel and Xiao Xiang Zhu
- Abstract summary: This study is based on the big So2Sat LCZ42 benchmark dataset dedicated to LCZ classification.
In addition, we proposed a CNN to classify LCZs from Sentinel-2 images, Sen2LCZ-Net. Using this base network, we propose fusing multi-level features using the extended Sen2LCZ-Net-MF.
Our work will provide important baselines for future CNN-based algorithm developments for both LCZ classification and other urban land cover land use classification.
- Score: 14.588626423336024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a unique classification scheme for urban forms and functions, the local
climate zone (LCZ) system provides essential general information for any
studies related to urban environments, especially on a large scale. Remote
sensing data-based classification approaches are the key to large-scale mapping
and monitoring of LCZs. The potential of deep learning-based approaches is not
yet fully explored, even though advanced convolutional neural networks (CNNs)
continue to push the frontiers for various computer vision tasks. One reason is
that published studies are based on different datasets, usually at a regional
scale, which makes it impossible to fairly and consistently compare the
potential of different CNNs for real-world scenarios. This study is based on
the big So2Sat LCZ42 benchmark dataset dedicated to LCZ classification. Using
this dataset, we studied a range of CNNs of varying sizes. In addition, we
proposed a CNN to classify LCZs from Sentinel-2 images, Sen2LCZ-Net. Using this
base network, we propose fusing multi-level features using the extended
Sen2LCZ-Net-MF. With this proposed simple network architecture and the highly
competitive benchmark dataset, we obtain results that are better than those
obtained by the state-of-the-art CNNs, while requiring less computation with
fewer layers and parameters. Large-scale LCZ classification examples of
completely unseen areas are presented, demonstrating the potential of our
proposed Sen2LCZ-Net-MF as well as the So2Sat LCZ42 dataset. We also
intensively investigated the influence of network depth and width and the
effectiveness of the design choices made for Sen2LCZ-Net-MF. Our work will
provide important baselines for future CNN-based algorithm developments for
both LCZ classification and other urban land cover land use classification.
Related papers
- Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - RSI-Net: Two-Stream Deep Neural Network Integrating GCN and Atrous CNN
for Semantic Segmentation of High-resolution Remote Sensing Images [3.468780866037609]
Two-stream deep neural network for semantic segmentation of remote sensing images (RSI-Net) is proposed in this paper.
Experiments are implemented on the Vaihingen, Potsdam and Gaofen RSI datasets.
Results demonstrate the superior performance of RSI-Net in terms of overall accuracy, F1 score and kappa coefficient when compared with six state-of-the-art RSI semantic segmentation methods.
arXiv Detail & Related papers (2021-09-19T15:57:20Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - A hierarchical deep learning framework for the consistent classification
of land use objects in geospatial databases [8.703408520845645]
In this paper, a hierarchical deep learning framework is proposed to verify the land use information.
A new CNN-based method is proposed aiming to predict land use in multiple levels hierarchically and simultaneously.
Experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%.
arXiv Detail & Related papers (2021-04-14T17:16:35Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - Classification of Polarimetric SAR Images Using Compact Convolutional
Neural Networks [24.553598498985796]
A novel and systematic classification framework is proposed for the classification of PolSAR images.
It is based on a compact and adaptive implementation of CNNs using a sliding-window classification approach.
The proposed approach can perform classification using smaller window sizes than deep CNNs.
arXiv Detail & Related papers (2020-11-10T17:09:11Z) - A Two-Stage Approach to Device-Robust Acoustic Scene Classification [63.98724740606457]
Two-stage system based on fully convolutional neural networks (CNNs) is proposed to improve device robustness.
Our results show that the proposed ASC system attains a state-of-the-art accuracy on the development set.
Neural saliency analysis with class activation mapping gives new insights on the patterns learnt by our models.
arXiv Detail & Related papers (2020-11-03T03:27:18Z) - Developing High Quality Training Samples for Deep Learning Based Local
Climate Zone Classification in Korea [0.5257115841810257]
Two out of three people will be living in urban areas by 2050, as projected by the United Nations.
Common urban footprint data provide high-resolution city extents but lack essential information on the distribution, pattern, and characteristics.
This study developed a custom Local Climate Zone (LCZ) data to map key Korean cities using a multi-scale convolutional neural network.
arXiv Detail & Related papers (2020-11-03T02:52:37Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z) - A framework for large-scale mapping of human settlement extent from
Sentinel-2 images via fully convolutional neural networks [0.0]
Human settlement extent (HSE) information is a valuable indicator of world-wide urbanization.
This paper presents a deep-learning-based framework to automatically map HSE from multi-spectral Sentinel-2 data.
The framework is validated against both manually labelled checking points distributed evenly over the test areas, and the OpenStreetMap building layer.
arXiv Detail & Related papers (2020-01-31T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.