Quantum Instruments and Conditioned Observables
- URL: http://arxiv.org/abs/2005.08117v1
- Date: Sat, 16 May 2020 22:27:37 GMT
- Title: Quantum Instruments and Conditioned Observables
- Authors: Stan Gudder
- Abstract summary: Sequential products of effects and conditioned observables have been introduced.
It is shown how these ideas can be unified within the framework of measurement models.
Joint probabilities of observables are considered.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observables and instruments have played significant roles in recent studies
on the foundations of quantum mechanics. Sequential products of effects and
conditioned observables have also been introduced. After an introduction in
Section~1, we review these concepts in Section~2. Moreover, it is shown how
these ideas can be unified within the framework of measurement models. In
Section~3, we illustrate these concepts and their relationships for the simple
example of a qubit Hilbert space. Conditioned observables and their
distributions are studied in Section~4. Section~5 considers joint probabilities
of observables. We introduce a definition for joint probabilities and discuss
why we consider this to be superior to the standard definition.
Related papers
- On the evolution of expected values in open quantum systems [44.99833362998488]
We identify three factors contributing to the evolution of expected values.
In some cases, the non-thermal contributions to the energy rate of change can be expressed as the expected value of a Hermitian operator.
arXiv Detail & Related papers (2024-02-29T06:47:28Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Coarse-Graining of Observables [0.0]
We first define the coarse-graining of probability measures in terms of kernels.
We show that two probability measures coexist if they are both parts of a single probability measure.
We extend these concepts to observables and instruments and mention that two observables need not coexist.
arXiv Detail & Related papers (2021-09-14T23:43:35Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Combinations of Quantum Observables and Instruments [0.0]
We study parts of observables, post-processing, generalized convex combinations, sequential products and tensor products.
We consider properties of observables measured by combinations of instruments.
In this work, we only consider finite-dimensional quantum systems.
arXiv Detail & Related papers (2020-10-15T21:26:22Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Relational observables, reference frames, and conditional probabilities [0.0]
We show how conditional expectation values of worldline tensor fields are related to quantum averages of suitably defined relational observables.
We analyze a recollapsing cosmological model, for which we construct unitarily evolving quantum relational observables.
arXiv Detail & Related papers (2020-06-09T21:54:18Z) - Finite Quantum Instruments [0.0]
This article considers quantum systems described by a finite-dimensional complex Hilbert space $H$.
We first define the concept of a finite observable on $H$.
We then discuss ways of combining observables in terms of convex combinations, post-processing and sequential products.
arXiv Detail & Related papers (2020-05-27T20:43:07Z) - Conditioned Observables in Quantum Mechanics [0.0]
This paper presents some of the basic properties of conditioned observables in finite-dimensional quantum mechanics.
We consider conditioning among three observables and a complement of an observable.
Finally, we present a method of defining conditioning in terms of self-adjoint operators instead of observables.
arXiv Detail & Related papers (2020-05-10T20:31:07Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.