論文の概要: Forensic Video Steganalysis in Spatial Domain by Noise Residual
Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2305.18070v1
- Date: Mon, 29 May 2023 13:17:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 14:59:45.501736
- Title: Forensic Video Steganalysis in Spatial Domain by Noise Residual
Convolutional Neural Network
- Title(参考訳): 雑音残差畳み込みニューラルネットワークによる空間領域の法医学的ビデオステガナリシス
- Authors: Mart Keizer, Zeno Geradts, Meike Kombrink
- Abstract要約: 本研究は, 画像ステガナシスに対する畳み込みニューラルネットワーク(CNN)に基づくアプローチを評価する。
ビデオステガノグラフィーデータセットを作成し、CNNを訓練して空間領域で法医学的ステガノリシスを行う。
我々はノイズ残差畳み込みニューラルネットワークを用いて埋め込み秘密を検出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research evaluates a convolutional neural network (CNN) based approach
to forensic video steganalysis. A video steganography dataset is created to
train a CNN to conduct forensic steganalysis in the spatial domain. We use a
noise residual convolutional neural network to detect embedded secrets since a
steganographic embedding process will always result in the modification of
pixel values in video frames. Experimental results show that the CNN-based
approach can be an effective method for forensic video steganalysis and can
reach a detection rate of 99.96%. Keywords: Forensic, Steganalysis, Deep
Steganography, MSU StegoVideo, Convolutional Neural Networks
- Abstract(参考訳): 本研究は, 画像ステガナシスに対する畳み込みニューラルネットワーク(CNN)に基づくアプローチを評価する。
ビデオステガノグラフィーデータセットを作成し、CNNを訓練して空間領域で法医学的ステガノリシスを行う。
ノイズ残差畳み込みニューラルネットワークを用いて埋め込み秘密を検出する。ステガノグラフィ埋め込みプロセスではビデオフレームの画素値が常に変更されるためである。
実験の結果、cnnに基づくアプローチは鑑識ビデオのステグアナリシスに有効な手法となり、検出率は99.96%に達した。
キーワード:法医学、seg analysis、deep steganography、msu stegovideo、convolutional neural networks
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Training Convolutional Neural Networks with the Forward-Forward
algorithm [1.74440662023704]
Forward Forward (FF)アルゴリズムは、現在まで完全に接続されたネットワークでしか使われていない。
FFパラダイムをCNNに拡張する方法を示す。
我々のFF学習したCNNは、空間的に拡張された新しいラベリング手法を特徴とし、MNISTの手書き桁データセットにおいて99.16%の分類精度を実現している。
論文 参考訳(メタデータ) (2023-12-22T18:56:35Z) - Testing the Channels of Convolutional Neural Networks [8.927538538637783]
畳み込みニューラルネットワーク(CNN)のチャネルをテストする手法を提案する。
GANの拡張であるFtGANを設計し、ターゲットCNNのチャネルの強度を変化させてテストデータを生成する。
また,テストのための代表的なチャネルを見つけるためのチャネル選択アルゴリズムも提案した。
論文 参考訳(メタデータ) (2023-03-06T09:58:39Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Region Growing with Convolutional Neural Networks for Biomedical Image
Segmentation [1.5469452301122177]
本稿では,各座標方向の予測マスク領域を反復的に成長させることにより,畳み込みニューラルネットワーク(CNN)を用いてセグメンテーションを行う手法を提案する。
我々は、CNNの確率スコアのしきい値を用いて、その領域にピクセルが追加され、その領域に新しいピクセルが加わらないまで繰り返し続けるかどうかを判定する。
本手法は,少量のトレーニングデータを活用するとともに,計算効率を保ちながら,高いセグメンテーション精度を達成し,生物学的に現実的な形態的特徴を維持できる。
論文 参考訳(メタデータ) (2020-09-23T17:53:00Z) - The efficiency of deep learning algorithms for detecting anatomical
reference points on radiological images of the head profile [55.41644538483948]
U-Netニューラルネットワークは、完全な畳み込みニューラルネットワークよりも正確に解剖学的基準点の検出を可能にする。
U-Net ニューラルネットワークによる解剖学的基準点検出の結果は,歯科矯正医のグループによる基準点検出の平均値に近づいた。
論文 参考訳(メタデータ) (2020-05-25T13:51:03Z) - Detecting Forged Facial Videos using convolutional neural network [0.0]
我々は,より小さな(少ないパラメータで学習する)畳み込みニューラルネットワーク(CNN)を用いて,偽ビデオ検出のためのデータ駆動型アプローチを提案する。
提案手法の有効性を検証するため,FaceForensicsの公開データセットを用いて,フレームベースとビデオベースの両方の結果を詳細に検討した。
論文 参考訳(メタデータ) (2020-05-17T19:04:59Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - Verification of Deep Convolutional Neural Networks Using ImageStars [10.44732293654293]
畳み込みニューラルネットワーク(CNN)は、多くの現実世界で最先端のアプリケーションを再定義している。
CNNは敵の攻撃に対して脆弱であり、入力のわずかな変更は出力の急激な変更につながる可能性がある。
本稿では,VGG16やVGG19などの実世界のCNNを,ImageNet上で高い精度で処理可能なセットベースフレームワークについて述べる。
論文 参考訳(メタデータ) (2020-04-12T00:37:21Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。